Differences

This shows you the differences between two versions of the page.

en:microvolt [2012/11/15 08:42]
deinega
en:microvolt [2013/08/08 21:28] (current)
deinega
Line 11: Line 11:
 To solve system of discretized equations on a mesh(es) we use Newton-Rhapson method. Linear algebra operations can be performed using PARDISO, LAPACK or any other solvers. To solve system of discretized equations on a mesh(es) we use Newton-Rhapson method. Linear algebra operations can be performed using PARDISO, LAPACK or any other solvers.
  
-For solar cells modeling, one can use carriers generation profile obtained from independent electromagnetic simulation. We are using results obtained by EMTL package that can be substituted as an input to Microvolt.+For solar cells modeling, one can use carriers generation profile obtained from independent electromagnetic simulation. We are using results obtained by [[\start|EMTL]] that can be substituted as an input to Microvolt.
  
 **Application of the code** **Application of the code**
Line 17: Line 17:
 Microvolt was successfully used to simulate solar cells of different geometries (nanowires, textured thin films) based on Si, GaAs, CdTe, etc. This is list of chosen publications: Microvolt was successfully used to simulate solar cells of different geometries (nanowires, textured thin films) based on Si, GaAs, CdTe, etc. This is list of chosen publications:
  
 +  * A. Deinega, S. Eyderman, S. John, "Coupled optical and electrical modeling of solar cell based on conical pore silicon photonic crystals", J. Appl. Phys. 113, 224501 (2013) [[http://jap.aip.org/resource/1/japiau/v113/i22/p224501_s1|http]]{{:deinega_-_coupled_optical_and_electrical_modeling_of_solar_cell_based_on_conical_pore_silicon_photonic_crystals.pdf|PDF}}
   * A. Deinega, S. John, "Solar power conversion efficiency in modulated silicon nanowire photonic crystals", J. Appl. Phys. 112, 074327 (2012) [[http://jap.aip.org/resource/1/japiau/v112/i7/p074327_s1|http]]{{:deinega_-_solar_power_conversion_efficiency_in_modulated_silicon_nanowire_photonic_crystals.pdf|PDF}}   * A. Deinega, S. John, "Solar power conversion efficiency in modulated silicon nanowire photonic crystals", J. Appl. Phys. 112, 074327 (2012) [[http://jap.aip.org/resource/1/japiau/v112/i7/p074327_s1|http]]{{:deinega_-_solar_power_conversion_efficiency_in_modulated_silicon_nanowire_photonic_crystals.pdf|PDF}}
 +  * A. Deinega, S. John, "Finite difference discretization of semiconductor drift-diffusion equations for nanowire solar cells", Comp. Phys. Commun. 183, 2128 (2012) [[http://www.sciencedirect.com/science/article/pii/S0010465512001853|http]]{{:deinega_-_finite_difference_discretization_of_semiconductor_drift-diffusion_equations_for_nanowire_solar_cells.pdf |PDF}}
  
 <html></td><td></html> <html></td><td></html>
-{{:transport.png?165}}+{{:transport.png?175}}
 <html></td></tr></table></html> <html></td></tr></table></html>
- 
- 
-  * A. Deinega, S. John, "Finite difference discretization of semiconductor drift-diffusion equations for nanowire solar cells", Comp. Phys. Commun. 183, 2128 (2012) [[http://www.sciencedirect.com/science/article/pii/S0010465512001853|http]]{{:deinega_-_finite_difference_discretization_of_semiconductor_drift-diffusion_equations_for_nanowire_solar_cells.pdf |PDF}} 
  
 **Download** **Download**
  
-You can download the code from [[https://sites.physics.utoronto.ca/sajeevjohn/software/transport|Microvolt web-page]].+You can download the code from [[https://sites.physics.utoronto.ca/sajeevjohn/software/microvolt|Microvolt web-page]].
 
/home/kintechlab/fdtd.kintechlab.com/docs/data/attic/en/microvolt.1352954531.txt.gz · Last modified: 2012/11/15 08:42 by deinega     Back to top