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In this paper, the theoretical sensitivity limit of the localized surface plasmon resonance (LSPR) to the surrounding
dielectric environment is discussed. The presented theoretical analysis of the LSPR phenomenon is based on per-
turbation theory. Derived results can be further simplified assuming quasistatic limit. The developed theory shows
that LSPR has a detection capability limit independent of the particle shape or arrangement. For a given structure,
sensitivity is directly proportional to the resonance wavelength and depends on the fraction of the electromagnetic
energy confined within the sensing volume. This fraction is always less than unity; therefore, one should not
expect to find an optimized nanofeature geometry with a dramatic increase in sensitivity at a given wavelength.
All theoretical results are supported by finite-difference time-domain calculations for gold nanoparticles of dif-
ferent geometries (rings, split rings, paired rings, and ring sandwiches). Numerical sensitivity calculations based
on the shift of the extinction peak are in good agreement with values estimated by perturbation theory. Numerical
analysis shows that, for thin (≤10 nm) analyte layers, sensitivity of the LSPR is comparable with a traditional
surface plasmon resonance sensor and LSPR has the potential to be significantly less sensitive to temperature
fluctuations. © 2012 Optical Society of America

OCIS codes: 240.6680, 050.6624, 260.3910, 280.4788, 290.3030.

1. INTRODUCTION
Optical properties of noble metal nanoparticles have attracted
significant interest in the past decade due to their unique abil-
ity to support surface plasmons under optical excitations [1,2].
Surface plasmons are electromagnetic surface waves originat-
ing from collective oscillation of conduction electrons near
the metal surface. Light coupling into surface plasmons
results in enhancement of the local electromagnetic field
and strong resonance in the extinction profile called localized
surface plasmon resonance (LSPR). The frequency and
intensity of LSPR are strongly dependent on nanoparticle
shape and composition as well as on surrounding the refrac-
tive index, especially in the nanoparticle vicinity [1–4]. The
presence of target molecules in the vicinity of the nanoparticle
surface can affect the local refractive index. This change can
be detected via a shift in LSPR frequency, and hence metal
nanoparticles can be utilized as biosensors in various
applications [1,5,6].

In thin film surface plasmon resonance (SPR) sensors [3,4],
plasmons are generated at the planar interface between metal
and dielectric with significant penetration (200–400 nm) of
the electromagnetic field into the dielectric medium. There-
fore, special techniques should be employed in SPR systems
to eliminate influence of the noise in the dielectric bulk.
Typical field penetration depth in LSPR geometry is 5–30 nm,
which matches well with interrogation volume for biological

monolayers [7,8]. Intrinsically LSPR-based sensors should be
less sensitive to bulk noise and require less complex instru-
mentation. Generally, LSPR has the potential for simplified de-
tection schemes, preserved or improved detection limits, and
high-density multiplexing [2,9].

Because of these possibilities, numerous research groups
have been investigating various aspects of LSPR systems.
Markedly, nearly all of the literature focuses upon discovering
a nanofeature geometry that enhances the LSPR sensitivity
(e.g., spheres [10–12], rods [13–18], shells [19–25], disks
[26–28], rings [29–32], and crescents [33–35]). However, sev-
eral groups have concentrated on analytical estimation of
LSPR sensitivity regardless of nanoparticle geometry. Miller
and Lazarides, relying on quasistatic polarizability of particles,
showed that bulk sensitivity is proportional to the LSPR
wavelength and depends on dispersive properties of the metal
[36,37]. Unger and Kreiter found that sensitivity in the quasi-
static limit is proportional to the fraction of the electro-
magnetic energy confined within the volume perturbed by
dielectric [38]. The perturbation theory developed by Lai et al.
[39] for the nonquasistatic case has been adopted by Unger
and Kreiter [40] but without taking into account the dispersion
characteristic of the metal and without benchmarking LSPR
performance against classical SPR sensitivity.

In this paper,we present a study to determine sensitivity lim-
it of LSPR sensors. Obtained results will be used to compare
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dependence of the LSPR and SPR sensitivities on the thickness
of the analyte layer and to estimate effect of the bulk tempera-
ture fluctuations on the signal-to-noise ratio. Theoretical
analysis is supported by detailed numerical calculations per-
formed by finite-difference time-domain (FDTD) method [41].

The paper is organized as follows. Section 2 contains deri-
vation of the general LSPR sensitivity expression based on
perturbation theory. Simplifications of the sensitivity expres-
sion under various assumptions (nondispersive metal, nonab-
sorbing metal, quasistatic limit) and their applicability to
practical sensors are discussed in Section 3. Numerical calcu-
lations of the sensitivity for gold nanoparticles of various geo-
metries (rings, split rings, paired rings, and ring sandwiches)
are given in Section 4. Comparison between LSPR and SPR
sensitivities and signal-to-noise analysis are presented in
Section 5. Section 6 summarizes the results.

2. GENERAL PERTURBATION THEORY
The LSPR frequency depends on the shape and dielectric
properties εm�ω� of the metal nanoparticle and on the dielec-
tric function of surrounding medium εd. The dielectric med-
ium is assumed to be lossless and nondispersive εd � n2.
The sensitivity S is defined as the frequency shift Δω upon
a change in the refractive index Δn:

S � Δω
Δn

: (1)

Refractive index change can occur either in the whole sur-
rounding volume or in the finite layer adjacent to the nanopar-
ticle. These two cases represent bulk and local sensitivity,
respectively.

Electric field excitation bound to the surface of the metal
particle satisfies wave equation (speed of light c � 1 for
simplicity)

∇ × �∇ × E0� − ω2
0ε�ω0�E0 � 0. (2)

Note that ε�ω0� and therefore resonant frequency ω0 can be
complex variables (imaginary part of ω corresponds to the
damping rate). If Im�εm�ω0�� ≠ 0, the problem is non-Hermitian
and Eq. (2) is not applicable for complex conjugated field E�.

Assume that the dielectric function of the surrounding en-
vironment has changed by Δε. As a consequence, the electric
field will have a new configuration E � E0 � E1, which should
satisfy the same wave equation Eq. (2) at a new resonant fre-
quency ω � ω0 �Δω:

∇ × �∇ × �E0 � E1�� − �ω2
0 � 2ω0Δω�Δω2�

×
�
ε�ω0� �Δε� ∂ε

∂ω

����
ω0

Δω
�
�E0 � E1� � 0. (3)

Terms Δε and
∂ε
∂ω

���
ω0

Δω have their nonzero values in the di-

electric and metal media, respectively: Δε is not zero outside

the metal particle due to analyte presence, and
∂ε
∂ω

���
ω0

Δω is not

zero inside the metal because of the resonant frequency shift
and dispersion of metal dielectric function. We neglect terms
∂nε
∂ωn

���
ω0

Δωn, n > 1 in expansion for metal dielectric permittiv-

ity in Eq. (3).

Neglecting terms of second order of smallness in Eq. (3)
and taking into account unperturbed wave equation Eq. (2)
results in

∇ × �∇ × E1� − ω2
0ε�ω0�E1 − 2Δωω0ε�ω0��E0 � E1�

− ω2
0

�
Δε�Δω∂ε

∂ω

����
ω0

�
�E0 � E1� � 0.

(4)

Multiplying Eq. (4) by E0 [not by E�
0 , since Eq. (2) does not

hold for E�
0 if Im�εm�ω�� ≠ 0] and integrating over total space

V leads toZ
V

E0�∇ × �∇ × E1� − ω2
0ε�ω0�E1�dV

� 2Δωω0

Z
V

E0ε�ω0��E0 � E1�dV

� ω2
0

Z
V

E0

�
Δε�Δω∂ε

∂ω

����
ω0

�
�E0 � E1�dV: (5)

Integrating Eq. (5) twice by parts and using initial Eq. (2) for
E0 results in

−

I
dS

�
Ei
0

∂Ei
1

∂r
−
∂Ei

0

∂r
Ei
1

�
� 2Δωω0

Z
V

E0ε�ω0��E0 � E1�dV

� ω2
0

Z
V

E0

�
Δε�Δω∂ε

∂ω

����
ω0

�

× �E0 � E1�dV; (6)

where at the first term summation over space indices i is
assumed.

The non-Hermitian character of the problem leads to a non-
zero surface integral in Eq. (6), which can be evaluated in the
far zone. We assume that ε�r� → 1 at infinity (otherwise the
argumentation can be easily modified); therefore, k � ω there
(since we put speed of light c � 1). Taking into account that

∂Ei

∂r
∼
∂�eiωr∕r�

∂r
� iω�eiωr∕r� ∼ iωEi;

∂Ei
1

∂r
� ∂�Ei

0 � Ei
1�

∂r
−
∂Ei

0

∂r
∼ iω0Ei

1 � iΔωEi
0;

and neglecting second-order term ΔωEi
1, the surface integral

in Eq. (6) can be rewritten as

I
dS

�
Ei
0
∂Ei

1

∂r
−
∂Ei

0

∂r
Ei
1

�
� iΔω

I
Ei
0E

i
0dS: (7)

As a result Eq. (6) turns into

−iΔω
I
E2
0dS�2Δωω0

Z
V

E0ε�ω0��E0�E1�dV

�ω2
0

Z
V

E0

�
Δε�Δω∂ε

∂ω

����
ω0

�
�E0�E1�dV: (8)

Neglecting second-order terms ΔωE1 and ΔεE1 leads to
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−ω2
0

Z
V

E0ΔεE0dV�Δω
�
ω0

Z
V

E0ε�ω0�E0dV

−ω0

Z
V

E0
∂�ωε�
∂ω

����
ω0

E0dV −i
I
E2
0dS

�
: (9)

Then frequency shift Δω can be related to the initial solution
E0 and perturbation Δε as

Δω
ω0

�
−

Z
V
ΔεE2

0dVZ
V

�
ε�ω0� �

∂�ωε�
∂ω

����
ω0

�
E2
0dV � i

ω0

I
E2
0dS

: (10)

The sensitivity expression S � Δω∕Δn can be found by
substituting Δε with 2ε�Δn∕n�:

S � −2
ω0

n

Z
Va

εE2
0dVZ

V

�
ε�ω0� �

∂�ωε�
∂ω

����
ω0

�
E2
0dV � i

ω0

I
E2
0dS

; (11)

where Va and V are volume perturbed byΔε and total system
volume, respectively. The surface integral in the denominator
of Eq. (11) should be evaluated in the far zone. Multiplying
both numerator and denominator of Eq. (11) by the integral
over dielectric volume

R
Vd

εE2
0dV leads to

S � −2
ω0

n
~f

Z
Vd

εE2
0dVZ

V

�
ε�ω0� �

∂�ωε�
∂ω

����
ω0

�
E2
0dV � i

ω0

I
E2
0dS

; (12)

where

~f �

Z
Va

εE2
0dVZ

Vd

εE2
0dV

: (13)

Equation (12) defines complex quantity S. E2
0 denotes scalar

product E • E, not complex conjugation EE�. Real part Re�S�
has meaning of the resonance peak shift due toΔn, while ima-
ginary part Im�S� is related to the change in peak broadening.

3. QUASISTATIC LIMIT
General sensitivity Eq. (12) can be significantly simplified
under additional assumptions.

If the metal dielectric function has negligible dispersion in
the vicinity of the resonance ω0, i.e., ∂ε∕∂ω ≪ ε, Eq. (12) re-
duces to one given by Lai et al. [39] (note that the authors of
this work took into account the possible degeneracy of unper-
turbed modes and presented a more complex expression):

S � −2
ω0

n
~f

Z
Vd

εE2
0dV

2
Z
V

ε�ω0�E2
0dV � i

ω0

I
E2
0dS

: (14)

If metal is lossless at resonant frequency (Im�εm� � 0,
Re�εm� < 0), the problem Eq. (2) becomes Hermitian and per-
turbation analysis can be repeated using E�

0 instead of E0.
Equation (12) can be rewritten as

S � −2
ω0

n
f

Z
Vd

εjE0j2dVZ
V

�
ε�ω0� �

∂�ωε�
∂ω

����
ω0

�
jE0j2dV

; (15)

f �

Z
Va

εjE0j2dVZ
Vd

εjE0j2dV
; (16)

where f is the ratio of the energy confined in the volume per-
turbed by analyte to the energy in whole dielectric bulk. While
evaluating integrals in Eq. (16), one can recognize that Va ⊂

Vd and therefore f is always not more then unity. Note that
energy is not dissipated in the lossless system and Eq. (15)
does not contain a surface integral term.

Interaction of the incident electromagnetic wave with the
metal particle can be considered quasistatic if the size of
the particle is much smaller than the resonant wavelength.
Then the problem is reduced to that of a metal particle in con-
stant external field. This case is the most relevant to biosen-
sing applications since the typical size of the fabricated
nanoparticles is 10–100 nm, which is much smaller than the
wavelength of the visible or near-infrared light.

In the quasistatic limit, the following expressions can be
derived for any local (resonant) mode [42]:

Z
V

ε�ω0�jE0j2dV � 0 (17)

or

Z
Vd

ε�ω0�jE0j2dV � −

Z
Vm

ε�ω0�jE0j2dV: (18)

In Eq. (18), first and second integrals are taken over the sur-
rounding dielectric bulk and metal nanoparticle, correspond-
ingly. Substitution of Eq. (18) into Eq. (15) leads to

SQS � −
ω0

n
f

2
Z

Vd

εjE0j2dVZ
Vd

εjE0j2dV �
Z
Vm

∂�ωε�
∂ω

����
ω0

jE0j2dV
: (19)

The ratio of the energies stored in metal and dielectric can be
expressed as
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q �

Z
Vm

�
∂ωε
∂ω

�
jE0j2dVZ

Vd

εjE0j2dV
�

Z
Vm

�
∂ωε
∂ω

�
jE0j2dV

−

Z
Vm

εjE0j2dV
� −

∂�ωεm�
∂ω
εm

:

(20)

Combining Eqs. (19) and (20), one can arrive to the following
expression for LSPR sensitivity in the quasistatic limit:

SQS � −
ω0

n
f

2
1� q

; (21)

Sλ
QS � Δλ0

Δn
� λ0

n
f

2
1� q

: (22)

This expression is derived under the assumption that
Im�εm� � 0. It is also applicable if jIm�εm�j ≪ jRe�εm�j in
the vicinity of the LSPR frequency. This assumption is valid
for gold or silver commonly used to manufacture nanoparti-
cles: for λ0 � 700 nm, jIm�εm�j ∼ 1.3 and jRe�εm�j ∼ 20. To cal-
culate q, only real part Re�εm� should be used in Eq. (20).

The upper limit for the LSPR sensitivity can be established
considering the bounds for f and q. The maximum value of the
fill factor f is unity, and it corresponds to the refractive index
change in the whole dielectric volume:

Sλ
QS ≤

λ0
n

2
1� q

: (23)

If the LSPR wavelength lies in the visible or near-infrared
range away from absorption peaks, the q ratio is larger than
unity [42]. For noble metals, Re�ε�ω�� can be approximated
well by Drude expression ε � ε0 − ω2

p∕ω2. Typically ωp ≫ ω,
and one can show that

q � ω2
p � ε0ω2

ω2
p − ε0ω2 ≈ 1� 2ε0

ω2

ω2
p
> 1. (24)

Taking into account the above-outlined bounds for q�> 1� and
f �≤ 1�, the sensitivity of the LSPR has the following upper
limit:

Sλ
QS <

λ0
n
: �25�

Analysis of Eqs. (16)–(25) leads to the following general con-
clusions: (1) sensitivity linearly increases with the LSPR
wavelength; (2) the upper limit of the sensitivity is indepen-
dent of the particle shape, as the upper value for f is unity
and q has unity as the lower bound; (3) selection and, possibly,
design of particle material should aim at minimizing energy
stored in the metal. Indeed, according to the expression for
q in the Drude case, an LSPR sensor made of a metal with high
plasma frequency ωp will have better performance.

4. NUMERICAL RESULTS FOR THE LSPR
SENSITIVITY
The FDTD numerical method of solving Maxwell’s equations
[41] was employed to calculate the sensitivity of the LSPRs for
various gold nanostructures. Calculations were done with the

help of free simulation package Electromagnetic Template Li-
brary, EMTL [43]. The gold dielectric function �εm � ε0�ω� �
iε00�ω�� was represented in Drude–Lorentz form by fitting ex-
perimental data in the visible range [44]. (Note that a more
sophisticated critical point model allows to fit gold dielectric
permittivity in the visible/near-ultraviolet range [45,46]. Re-
cently, implementation of this model in the FDTD using the
auxiliary differential equation technique [47] and the recursive
convolution technique [48] was reported).

Geometry of the FDTD simulation is shown in Fig. 1. The
calculated space (mesh step 2.5 nm) is surrounded by absorb-
ing a perfectly matched layer (PML) [41]. A PML is comple-
mented with an additional back absorbing layer [49] to
reduce numerical reflections. The total field (TF)/scattered
field (SF) method [41] is used to generate a test plane-wave
impulse impinging on nanoparticle. To reduce staircasing ef-
fects caused by FDTD rectangular mesh, subpixel smoothing
for dielectric permittivity is used [50]. The total (scattered)
field is measured by detectors forming a closed surface sur-
rounding nanoparticle in the TF (SF) region. Absorption (scat-
tering) cross-section spectra are calculated by integrating
Poynting vector flux over this surface in the TF (SF) region
with normalization by the incident flux.

Extinction cross section is obtained as a sum of absorption
and scattering cross sections. The plasmonic resonant wave-
length is determined by the maximum in the polynomial fit of
the extinction spectra near its maximum. Reference extinc-
tion in water (n � 1.33) for a given structure is calculated
first. Then, the uniform dielectric layer (n � 1.40) of finite
thickness is applied on the nanoparticle to simulate the ana-
lyte layer. The extinction spectrum is recalculated, and the
spectral shift of the resonance wavelength is translated into
sensitivity S � Δλ∕Δn.

LSPR sensitivities have been calculated numerically for the
geometries presented in Fig. 2.

• Standalone rings.
• Split rings with radial 30° segment removed. The cut

is oriented either parallel or perpendicular to the light
polarization.

• Ring pairs (two rings arranged in-plane at 30 nm dis-
tance). The axis connecting the ring centers is either parallel
or perpendicular to the light polarization.

• Ring sandwiches (two rings spaced by either 20 or
50 nm along their axis).

The rationale behind the investigation-listed geometries is
twofold. First, it has been shown that the wavelength λ0 of the
ring plasmonic resonance can be tuned by geometry across
the visible and near-infrared spectral range [29–32]. Second,
a certain degree of field enhancement is expected in split rings
and closely spaced rings, and its effect on the LSPR sensitivity
can be investigated. Rings, used as blocks for the above-
listed structures, are characterized by outer diameter

nanoparticle

absorption detectors

scattering
detectors

Fig. 1. FDTD simulation three-dimensional cell (cross-sectional
view). Scale is not preserved.
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50 nm ≤ d ≤ 200 nm, height 50 nm ≤ h ≤ 200 nm, width (differ-
ence between outer and inner radius) 10 nm ≤ w ≤ 50 nm.

As an illustration, the calculated extinction cross-section
spectra and the near-field distributions jEj∕jEincj at the reso-
nance wavelength for ring and split rings of two cut orienta-
tions are presented in Fig. 3. Ring parameters are d � 75 nm,
w � 10 nm, h � 20 nm.

The results of the sensitivity calculations for the 20 nm ana-
lyte layer are presented in Fig. 4 along with the analytical sen-
sitivity limit Sλ

QS given by Eq. (22). It should be stressed that, in
Eq. (22), fill factor f is taken as unity and gold material proper-
ties are used to calculate q. One can see that sensitivity values
for various geometries do not exceed theoretical limit Sλ

QS ,
thus supporting the earlier statement that upper sensitivity
limit does not depend on the geometry of the nanoparticles.
As expected, the sensitivity differences are driven mostly by
location of the LSPR wavelength in the spectrum.

The theoretical limit is also in agreement with experimen-
tally measured bulk sensitivities for various geometries,
as presented in Fig. 5. With exception of two points for nano-
rods {700 nm∕refractive index unit �RIU� at λ0 � 830 nm
measured by Yu and Irudayaraj [18] and 850 nm∕RIU at λ0 �
1100 nmmeasured by Lyvers et al. [16]}, the experimental sen-
sitivities are close to or below the theoretical limit.

However, Fig. 4 shows that there are geometries, even
within the same structural type, with nearly identical LSPR

wavelengths but yet varying in sensitivity by as much as
50%. To explain this observation, sensitivities and fill factors
were calculated according to Eqs. (12) and (13) for selected
geometries. Initially, FDTD simulations were performed for a
nanoparticle in unperturbed bulk using extended mesh to en-
sure that almost all of the SF is confined inside the computa-
tional cell. Then, during FDTD simulation, fields E0 outside
and inside of the nanoparticle were recorded at known reso-
nance wavelength using discrete Fourier transformation on
the fly. Further integration of the E0 according to Eq. (12)
and (13) results in sensitivity Spt and filling factor ~f for a given
geometry and analyte thickness [note that, for our FDTD set-
up, the surface integral was typically less than 2% of volume
integrals at Eqs. (12) and (13)]. Re�Spt� and Re�~f � along with
sensitivity S calculated using shift in extinction spectra are
given in Table 2. Typically, Im�Spt� and Im�~f � are less than
1% of the real part and therefore neglected. Generally, Spt

and S agree qualitatively, and the difference can be explained
by the argument that the SF may not necessarily coincide with
the plasmon eigenmode on the nanoparticle.

Analysis of the data presented in Table 2 shows that fill fac-
tor ~f plays significant role in defining sensitivity of the nanos-
tructure. Indeed, normalized sensitivities Spt∕~f shown in Fig. 6
almost coincide with theoretical LSPR limit Sλ

QS . As an
example, one can examine closely the data before and after
normalization for the geometries highlighted in Table 2.
Highlighted structures have similar λ0 while sensitivities are
significantly different, and after normalization the scatter is
removed. Data presented in Fig. 6 and Table 2 also show that

Ring Split ring Ring pair Ring sandwich

Fig. 2. (Color online) Geometries under consideration.

700 800 900 1000 1100
0

2

4

6
x 10

4

wavelength λ
0
, nm

mn,noitces
ssorc

noitcnit xe
2

1
2

3

0 10 20

1 2 3

E
inc

Fig. 3. (Color online) Extinction cross-section spectra and near-field
distributions jEj∕jEincj (far from a nanoparticle jEj∕jEincj � 1) at the
resonance wavelength for ring and split rings of two cut orientations
(outer diameter d � 75 nm, width w � 10 nm, height h � 20 nm).

500 600 700 800 900 1000 1100
0

200

400

600

800

resonant wavelength λ
0
, nm

UI
R/

mn,
S

ytiv it i sn es

LSPR limit
rings 20nm
split rings 20nm
ring pairs 20nm
sandwiches 20nm

Fig. 4. (Color online) Calculated LSPR sensitivities for gold nanopar-
ticles in water as a function of the resonance wavelength λ0. Analyte
layer −20 nm. Solid line, Eq. (22). Dots of the same shape represent
same geometry with different dimensions.

500 1000 1500
0

200

400

600

800

1000

resonant wavelength λ
0
, nm

UI
R/

mn,
S

ytivitisnes

LSPR limit
experimental data

Fig. 5. (Color online) Experimental bulk sensitivities for various geo-
metries as a function of the resonance wavelength. Table 1 provides
numerical values, geometrical details, and corresponding references.
Solid line, Eq. (22).
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field penetration depth is of the order of 20 nm. Therefore,
limited improvements in sensitivity can be achieved by in-
creasing the thickness of the analyte layer.

The presented numerical analysis is in line with theoretical
findings, and both are suggesting the same recipe to improve
LSPR sensitivity. Generally, the sensor has to be designed to
have a resonance at longer wavelengths, and particle geome-
try should be optimized to increase electromagnetic energy
confinement within the analyte.

5. LSPR VERSUS SPR
The superior performance of SPR sensors stems from extreme
sensitivity of the plasmon resonance coupling condition to the
properties of the dielectric medium. SPR sensors detect
changes in the refractive index of the surrounding medium
with sensitivities approaching 1400 nm∕RIU [56,57]. This sen-
sitivity is achieved in part due to the long decay length of pro-
pagating plasmons (200–400 nm), providing detection abilities
well into the bulk environment. However, these long decay
lengths and superior sensitivity come at the cost of signal
to noise when sensing thin analyte layers. In biological sensing
applications, where a monolayer of biomolecules generally
creates a dielectric layer of 5–30 nm in thickness, the fraction
of the electromagnetic energy stored in the analyte for SPR is
far below the maximum value of unity. One way to compen-
sate for the lower fill factors inherent to biomolecule detec-
tion would be to decrease the size of the sensing volume.
Indeed, this is the case with localized SPR, where the sensing
volume typically extends 30 nm from the nanoparticle surface.

The wavelength-dependent SPR sensitivity S�λR�was calcu-
lated for the standard Kretschmann configuration. Water
(n � 1.33) was taken as the working fluid, and calculations
were performed for a 50 nm thick gold film on top of a glass
prism (n � 1.53). SPR manifests itself as a dip in the reflec-
tance spectrum when p-polarized light is incident on the prism
at particular angle. This pair—incidence angle and wave-
length corresponding to reflectance minimum—represents a
momentum matching condition, which is necessary to excite
SPR at the gold–fluid interface. Reflectance spectra were cal-
culated based on classical transfer matrix formalism [58]
(note that they could be calculated using the FDTD iterative
technique for modeling the periodic structures at oblique in-
cidence [59] as well). For a given wavelength λR, the incident
angle was scanned to determine angle θR for which reflectivity
reaches its minimum. Then the angle was fixed at θR and the
spectra were calculated for a bare gold film as well as for a
gold film with a 20 or 10 nm thick analyte layer. The sensitivity
was calculated from the shift of the resonance wavelength
upon addition of the analyte layer. To determine wavelength-
dependent sensitivity S�λR�, the calculations were repeated
for λR � 580–1100 nm. The lower wavelength limit 580 nm
is determined by increase in gold absorption.

A comparison of the calculated SPR and LSPR sensitivities
for 20 and 10 nm analyte layers is presented in Fig. 7. Clearly,
sensitivity of the SPR system is superior to that of LSPR for the
20 nm analyte layer. However, the sensitivity of LSPR appears
to coalesce with SPR if thickness of the analyte layer de-
creases to ∼10 nm. Furthermore, calculations with variable
analyte thicknesses presented in Fig. 8 show that LSPR does
have sensitivities similar to SPR for the relevant to biomole-
cular sensing analytical volumes. Calculations presented in
Fig. 8 provide a measure of the LSPR field penetration depth
and show LSPR sensitivity saturation as analyte thickness in-
creases beyond 20 nm.

The above discussion of LSPR versus SPR sensitivities is
purposefully devoid of noise considerations. However the
key metric for analytical instrumentation is not solely sensi-
tivity but rather the achieved detection limit and signal-to-
noise ratio. Specifically, SPR will register fluctuations of
the refractive index in the test solution outside of the biomo-
lecular layer due to its large bulk sensitivity and long sensing
decay lengths. LSPR will be physically insensitive to this noise
outside of its field penetration depth. Examples of these noise

Table 1. Experimentally Measured Resonance

Wavelengths λ0 (in nm) and Sensitivities S
(in nm/RIU)

Geometry λ0 S Geometry λ0 S

Prism [51] 630 205 Disk [28] 1200 633
Rattles [52] 650 285 Shell [25] 720 408
Pyramids [53] 600 200 Star [54] 800 232
Rice [19] 1460 802 Tube [55] 650 250
Rod [15] 720 170 Branch [17] 1141 703
Rod [16] 1100 850 Crescent [35] 1083 368
Rod [17] 1096 540 Ring [29] 1050 550
Rod [14] 840 260 Shell [29] 1250 750
Rod [18] 830 700

Table 2. Sensitivities S (Shifts in Spectra) and Spt [Field Integration according to Eq. (12)], Fill Factors ~f
[according to Eq. (13)], and Normalized Sensitivities Spt∕~f for the Subset of Investigated Geometriesa

Analyte 20 nm Analyte 10 nm

Dimensions nm Resonanceλ0, nm S Spt
~f Spt∕~f S Spt

~f Spt∕~f

Ring 75/10/20 993 503 424 0.73 583 351 282 0.48 583
100-10-200 813 324 277 0.64 435 211 191 0.44 435

Split Ring 75/10/20 979 498 449 0.74 607 357 308 0.51 607
150-50-20 878 339 296 0.54 549 219 187 0.34 550

Sandwich 75/10/20 924 441 369 0.71 523 305 224 0.47 523
Spacing 20 nm 75/10/100 846 452 375 0.82 457 335 292 0.64 457

150/50/20 821 294 247 0.51 488 184 152 0.31 490
125/50/100 773 412 369 0.86 431 360 315 0.73 431
100/20/200 661 223 157 0.58 273 147 106 0.39 274
50/20/100 524 119 131 0.74 178 78 84 0.52 160

aFor Spt , ~f , and Spt∕~f , real parts are presented (typically the imaginary part for these values are less than 1% of the real part). Dimensions are given in diameter/
width/height format.
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contributing fluctuations include heterogeneous bulk distribu-
tions of density changes from nonuniform flow profiles, of
temperature profiles, and of local concentration of analytes/
solutions.

Estimated signal-to-noise (S/N) ratios for sensors based on
LSPR and SPR are provided in Fig. 9. Both sensors are probing
a 20 nm analyte layer in water. The refractive index of water
changes by 10−4 RIU per degree K near room temperature
[56,60]. Thermal stability ΔT is assumed to be 10 mK, which
corresponds to fluctuations ΔnT ∼ 10−6 in bulk refractive in-
dex. The change of the refractive index in the analyte layer is
taken as ΔnA � 10−5, which is of the order of SPR sensor
resolution [3]. The following equation is used to calculate the
S/N ratio for both LSPR and SPR sensors:

GLSPR;SPR � S
N

� ΔλS
ΔλN

� S20nm
layer ·ΔnA

Sbulk ·ΔnT
; (26)

where S20nm
layer and Sbulk are sensitivities to the local and bulk

refractive index change, respectively.

As one can see from Fig. 9, LSPR provides a factor of 6–8
improvement in S/N in the case of a thin analyte layer. In fact,
one can show that LSPR gain in S/N over SPR does not depend
on ΔnT and ΔnA. As evident from Figs. 4 and 8, LSPR bulk
sensitivity and sensitivity to the 20 nm analyte layer are close,
S20nm
layer ≈ Sbulk. Therefore, the LSPR S/N gain over SPR can be

written as

GLSPR

GSPR
� SLSPR

layer

SLSPR
bulk

·
SSPR
bulk

SSPR
layer

≈
SSPR
bulk

SSPR
layer

≈ 8 at 750 nm. (27)

Estimates also show that 5 mK temperature fluctuations will
result in S∕N ≈ 3 for an SPR system sensing a 20 nm analyte
layer at 700 nm. The LSPR sensor can tolerate ≈ 30 mK noise
to achieve the same S/N ratio for the same analyte layer and
resonant frequency.

Commercial SPR systems have multiple engineering and
processing solutions to ensure that the noise is muted and
an appreciable detection limit is achieved. For example,
highly controlled housing is added around the SPR sensor
in order to eliminate temperature fluctuations and vibration.
This housing performs remarkably well, allowing current
state-of-the-art SPR sensors to reach detection limits of
10−7 RIU. However, the need for sophisticated instrumenta-
tion raises both the cost and the complexity of the SPR
system.

This theoretical examination of the S/N characteristics of
SPR and LSPR systems has been experimentally vetted by
studies comparing biomolecule detection for SPR and LSPR
[57,61]. Importantly, in both cases, these separate groups
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Fig. 6. (Color online) Sensitivities of the nanostructures with and
without normalization by filling factor. Geometries and numerical
values for λ0, S,~f , and Spt∕~f are provided in Table 2.
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height h � 50 nm) and SPR as a function of the analyte thickness.
Resonance wavelength for both sensors is 770 nm.
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analyte layer is 10−5.
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demonstrated similar performance for the two sensor
modalities, despite the superior bulk detection ability of SPR.

6. CONCLUSION
Sensitivity of LSPR has a physical limit directly proportional
to the resonance wavelength. Given specific resonance wave-
length, the sensitivity is governed by fill factor f , defined as
the fraction of the electromagnetic energy within the sensing
volume. The maximum value of f is unity, and thus the upper
limit of the sensitivity does not depend on the shape of the
particle. The particle shape and features should be chosen
to have LSPR wavelength as far to the infrared as possible
in biological assay systems, and fill factor f should be opti-
mized ( f → 1) as well via the geometry of the feature. Particle
material should be considered in the design of the LSPR sen-
sor to minimize (q → 1) energy confined in the metal particle.

Sensitivity of the LSPR is on par with SPR for analyte thick-
ness ≤10 nm. Because of the localized nature of plasmonic os-
cillations excited on the nanoparticles, LSPR is immune to the
bulk noise sources that plague SPR systems. LSPR will per-
form ∼8-fold better in terms of S/N as compared to the classic
SPR in the same temperature-controlled environment.
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