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Iterative technique for analysis of periodic
structures at oblique incidence in the
finite-difference time-domain method
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Normal incidence of a plane electromagnetic wave on a periodical structure can be simulated by the finite-
difference time-domain method using a single unit cell with periodical boundary conditions imposed on its
borders. For the oblique wave incidence, the boundary conditions would contain time delays and thus are
difficult to implement in the time-domain method. We propose a method of oblique incidence simulation,
based on an iterative algorithm. The accuracy of this method is demonstrated by comparing it with the layer
Korringa–Kohn–Rostoker frequency-domain method for calculation of transmission spectra of a monolay-
ered photonic crystal. © 2008 Optical Society of America
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The finite-difference time-domain (FDTD) method [1]
is one of the most popular techniques employed in the
computational electrodynamics. The reason for this is
its relative implementation simplicity, ease of com-
plex geometry generation, and ability to handle non-
linear media. Simulation of optical properties of peri-
odical structures having a surface (photonic crystals,
antenna arrays, etc.) is one of the applications of
FDTD. Plane waves coming from a remote source are
usually used to numerically obtain transmission and
reflection properties of these structures. For any
given point x� and any field F� �x� , t� propagating in a
planar periodic structure as a result of its interaction
with a plane wave k� , the following condition holds:

F� �x�,t� = F� �x� + a� ,t + �k�a� �/�kc��, �1�

where a� =m1a� 1+m2a� 2, m1,2�Z is a combination of
lattice translation vectors a� 1,2, which are parallel to
the structure surface. If the wave propagates nor-
mally to the surface �k�a� =0�, the simulation may be
limited to a single unit cell by imposing periodic
boundary conditions: F� �x�b , t�=F� �x�b+a� b , t�. At bound-
ary points x�b of the unit cell the fields are mapped to
the corresponding opposite boundary x�b+a� b along pe-
riodic directions (a� b= ±a� 1,2 for four possible bound-
aries). Thus, together with the known analytic inci-
dent wave at nonperiodic boundaries the system of
Maxwell equations becomes closed. If the wave is ob-
lique to the surface, time shift

�tb = �k�a� b�/�kc� = ± a1,2 sin �1,2/c, �2�

where �1,2 are incidence angles with respect to corre-
sponding lattice translation vectors, should also be
included in the boundary conditions. It can be either
positive or negative, depending on the unit-cell bor-
der location, so both retarded and advanced field val-

ues should be used at the borders. While the retarded
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values can be picked up from the recorded wave
propagation, getting the advanced values constitutes
a problem.

Several methods were proposed for solving this
problem within FDTD. These methods may be subdi-
vided into three groups. In the first group, new vari-
ables expressed via E� and H� fields are introduced in
such a way that the time shift between the adjacent
unit cells is excluded [2]. The equations for the new
variables are equivalent for every unit cell but are
different from the Maxwell equations and require
special solution techniques, such as the multigrid ap-
proach [3] or the split-field method [4]. The stability
of these methods tends to zero with increasing inci-
dence angle, thus making simulation at large angles
impossible.

Another idea is to force complex Bloch boundary
conditions at the boundaries by setting in Eq. (1)

F� �x�b,t� = F� �x�b + a� b,t + �tb� = F� �x�b + a� b,t�exp�j�b�,

thus replacing time shift with a complex phase �b.
This replacement is valid only when the incident
plane wave is monochromatic with frequency �0 and
the phase is uniquely related to the incidence
angle(s): �b= ±�0a1,2 sin �1,2 /c. If the initial incident
wave used in the simulation is indeed monochro-
matic, one obtains results for a single frequency and
a single incidence angle per simulation, as in the
sine–cosine method [5]. Alternatively, one may use a
nonmonochromatic wave as a source and some se-
lected phase �b [6]. Then transmittance for a range of
(�, �) pairs can be extracted from a single simulation.
A drawback of these methods is transition to the fre-
quency domain, which may hinder the advantages of
the time-domain simulation.

The third group of methods stays within the stan-
dard FDTD simulation design. The simplest of these

is the multiple unit cells method [7]. Additional cells
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are added along the direction from which the incident
wave arrives; this sequence of cells is terminated by a
perfectly matched layer (PML). The terminating cell
is a source of error, the magnitude of which depends
on the number of additional cells and the incidence
angle. Additional cells are introduced in the angled-
update method [1] as well, where nonsimultaneous
Yee mesh updates are used. The future field values
are acquired from the time-advanced adjacent cells.
This method is restricted to angles less than 35° (in
the 3D case).

In the following we describe our new iterative
method, where the time-dependent boundary condi-
tions are found, so that FDTD solution inside a com-
putational volume satisfies Eq. (1). Calculation for a
specific incidence angle � needs several (5–10) simu-
lations, which we call iterations later on. Consider a
unit cell of a periodic structure of scattering objects
(Fig. 1) with a surface parallel to the line 3 in the fig-
ure (the 2D case is considered for simplicity with lat-
tice translation vectors a1=a and a2=0 and time shift
�t= ��tb � =a sin � /c). We use the total field/scattered
field (TF/SF) technique [1] to generate a wave inside
the total field region, shown shaded in Fig. 1. The
time-dependent TF/SF boundary condition at border
3 represents the obliquely incident plane wave and is
known analytically. Moreover, both the total and the
scattered field must satisfy Eq. (1). The main idea of
our method is to apply additional TF/SF-like wave
generation at the side borders x�1 and x�2 of the unit

Fig. 1. (Color online) Iterative method geometry; PMLs
are used to absorb scattering waves. 1, 2, generating (TF/
SF) borders where transferred fields are taken as a source;
1�, 2�, corresponding image locations; 3, TF/SF border with
analytic oblique source; 4, detectors for signal analysis.

Fig. 2. First and fifth iterations of the experiment with ob-
lique incidence on a metallic plate; �=45° wave energy is
plotted. The incident and reflected waves are clearly seen

on the fifth iteration.
cell using time-shifted field evolution obtained from
the image points at opposite borders x�1�=x�1+a� and
x�2�=x�2−a� . For the negative time shift (data from the
past), fields from the current iteration i may be used,
whereas for the time-advanced fields we use the re-
corded evolution from the previous iteration:

F� i�x�2,t� = F� i�x�2�,t − �t�, �3�

F� i�x�1,t� = F� i−1�x�1�,t + �t�. �4�

The distance between borders 1 and 2 is taken
greater than a by some span �x of several mesh steps
to separate image points and the TF/SF borders. To
record E� �x�1 , t� and H� �x�1 , t�, a memory buffer of
6NT /dt entries is required, where T is the duration
of the simulation, dt is the mesh time step, and N
=NyNz is the number of mesh cells crossing border 1.
A buffer of the size 6N�t /dt is also required to use
time-delayed fields at border 2. For time values t�0
and t�T the transferred fields are assumed zero:
F� i�x�1�,2� , t�=0. As the initial boundary condition for
the first iteration, either the analytic incident wave
or zero (no signal) is taken at the parts of borders 1
and 2 adjacent to the TF region. Surprisingly, the
zero choice gives faster convergence for most geom-
etries. The iterative process is illustrated by Fig. 2.
When convergence is reached, the scattered fields
both to the left of border 1 and to the right of border
2 must vanish. The total energy flux through these
borders into the SF region can be used as a measure
of numerical error (Fig. 3). To prove convergence of
the process, we represent a source signal at borders 1
and 2 at each iteration i as a sum F� i=F� 0+�F� i, where
F� 0�x�b , t� satisfies Eq. (1), and �F� i is some error signal.
We note that because of the linearity of both Maxwell
equations and the time-shift operations with respect
to fields F� i�x� , t�, and the superposition principle, the
evolution of error �F� i with i at each generating bor-
der may be considered separately from F� 0. Any such

Fig. 3. Scattered field energy flux through borders 1 and 2
of the computational volume (numerical error) for the setup

of Fig. 2.
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error will be reverted back to the source border at the
next iteration with (a) positive time delay and (b) di-
minished amplitude. To prove these properties, ob-
served numerically in Fig. 3, let us consider some
source signal �F� i at border 1 with arbitrary small
time duration at t=0. (a) The time needed for the sig-
nal to travel to the image points 1� is at least �t11�
= �x�1�−x�1 � /c=a /c. This signal is recorded at 1� and is
transferred to 1 with advancing time shift �t [Eq.
(4)], so the total time delay is �t1=�t11�−�t=a�1
−sin �� /c, which is greater zero if ��90°. This signal
is also recorded at 2� and reappears from 2 at the cur-
rent iteration, but propagating away from 1� and 1.
At the next iteration the error signal �F� i+1 at border
1 will be zero, at least during the time interval
�0,�t1�. The same is true for border 2 with �t2=a�1
+sin �� /c. So any source signal at borders 1 or 2 of du-
ration T, containing some error, and not satisfying
Eq. (1) will be separated from this error in time dur-
ing at most n�T /�t1 iterations (the error signal is
delayed by time T). In the above we assumed that the
analytic border 3 may not generate error signals,
which is not completely correct. Two error signals are
seen in Fig. 3; the smaller, stable one accompanying
the actual incident wave and related to the usual
TF/SF error caused by mesh dispersion, and the “side
border” error. The second error delays gradually with
iterations and finally separates from the solution. (b)
Because of scattering and diffraction inside the com-
putational volume, some energy of the error signal
avoids the recording image points, gets absorbed by
PMLs, and is not reverted back at subsequent itera-

Fig. 4. (Color online) Transmittance of a photonic crystal
monolayer (frequency dependence); �=45°.

Fig. 5. (Color online) Transmittance of a photonic crystal
monolayer (incidence angle dependence); f=0.6/a.
tions. This reduction of error depends greatly on the
properties of the scattering structure under consider-
ation.

We implemented the iterative method as part of
the generic contour-based simulation library [8]. The
method has been benchmarked on a photonic crystal
monolayer consisting of a square lattice of metal
spheres ��=4�0 ,	=2� and subject to incident field of
Berenger form �t− t0�exp�−�t− t0�2 / tdecay

2 � at different
angles. The lattice period was set to a=1, the sphere
radius to 0.375, and the mesh space step to 0.05 �c
=�0=1�. To reduce the error caused by the staircasing
effect, the tensor subpixel smoothing for dielectric
permittivity was used at the sphere borders [9,10]. In
Figs. 4 and 5, the comparison is presented between
transmittance spectra results, obtained by our
method and the layer Korringa–Kohn–Rostoker
method [11]. The results are in good agreement even
after only five iterations, transmittance for higher
frequencies and lower angles converging faster.

To conclude, we compare our method with other ob-
lique incidence approaches. The new iterative
method is free from the major drawbacks of the men-
tioned methods (limited/unpredictable stability, irre-
ducible errors, large meshes, limited incidence angle,
lack of direct time-domain evolution). The signal of
any duration and incidence angle may be analyzed
using the proposed method; however, sometimes
there is a cost of large memory storage and additional
iterations needed to separate error. Since the data
flow per the FDTD step from the storage buffer is not
very intensive, disk storage may be efficiently uti-
lized for buffering.
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