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a b s t r a c t

In this paperwe review a recently developed finite-difference time-domain (FDTD) iterative technique for
the analysis of periodic structures at oblique incidence.We showhow it can be implemented in FDTD code
and estimate required computer memory and time resources. To illustrate performance of our technique
we demonstrate the plasmon formation in a thin gold film placed at air/glass interface and calculate
reflectance from silicon textured coating at oblique incidence.
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1. Introduction

Finite-difference time-domain (FDTD) [1–3] is one of the most
popular numerical methods in computational electrodynamics. It
is widely used for the calculation of transmission and reflection
for planar layers of scatterers, like photonic crystals or antenna
arrays. Transmission and reflection can be obtained by simulating
the propagation of a temporal electromagnetic impulse through
the considered structure. A numerical experiment needed to obtain
transmission and reflection properties of a layermay become quite
complicated if we consider oblique wave incidence.

The usual simulation scheme for obtaining transmission and
reflection from FDTD calculation consists of the following. An in-
cident plane wave is generated in FDTD space as coming from out-
side the structure with the required direction. Usually it has a wide
wavelength spectrum, so the transmission and reflection may be
obtained for a range of frequencies from one simulation. To gener-
ate a plane wave in FDTD several techniques may be applied, the
most efficient of them is the Total Field/Scattered Field method [1]
which we discuss below.

In the case of periodicity in planar direction a single unit cell
with periodic boundary conditions may be simulated (Fig. 1). At
normal incidence of the incoming plane wave due to the symmetry
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of the system we have

F(x, t) = F (x ± a, t) , (1)

where F is the electric or magnetic field (E or H), a is a lattice
translation vector parallel to the structure surface, x and t are
coordinates in space and time. Eq. (1) taken at boundary points x of
the simulated unit cellmay be used as boundary conditions, stating
that the fields at opposite boundaries should be equal. These
boundary conditions are implemented in FDTD by simply using the
same grid points for both boundaries. Absorbing PerfectlyMatched
Layers (PMLs) [1] are usually used for non-periodical direction
and absorb the reflected and transmitted waves modeling their
withdrawal to the infinity.

In the course of simulation the numerically obtained fields at
locations corresponding to transmitted and reflected waves are
recorded. The transmitted fields are recorded behind the planar
structure, and the reflected fields are recorded in front of it
(taking into account the incident wave). Total exit of the radiation
from the structure determines the simulation time. The recorded
transmitted and reflected waves are transformed to the frequency
domain and normalized to the incident spectrum to calculate
transmittance (reflectance).

At oblique incidence periodic boundary conditions analogous
to (1) contain a time shift. In 2D they take a form (generalization
for 3D case is straightforward)

F(x, t) = F (x ± a, t ± δt) , (2)
δt = a sin θ/c, (3)
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Fig. 1. FDTD geometry setup for single unit cell of photonic crystal slab, consisting
of a square lattice of spheres. Unit cell is confined by periodic boundaries 1 and
2. The virtual total field/scattered field (TF/SF) surface 3 generates incident plane
wave impulse impinging the cell. PMLs absorb reflected and transmitted waves
simulating their withdraw to infinity.

where θ is the angle of incidence, c is the speed of light in the inci-
dentmedium. Themeaning of the expression (2) can be clarified by
Fig. 1. Obliquewave comes to periodic border 1 earlier than to peri-
odic border 2. Therefore the field values at these borders are shifted
in time. Using of periodic boundary conditions requires knowledge
of retarded field values at border 1 (for applying at border 2) and
advanced field values at border 2 (for applying at border 1). The
retarded fields can in principle be picked up from a recorded wave
propagation. Obtaining the advanced fields constitutes a problem
since they are unknown during numerical experiment.

Several methods were proposed to deal with this problem.
These methods can be classified in three groups.

In the first group, a special field transformation is used to
eliminate the time shift between the adjacent unit cells [4–10].
However, the transformed equations differ from the standard
Maxwell’s equations and their numerical solution becomes unsta-
ble when the angle of incidence approaches θ = 90°. Besides this,
additionalmodification of themethod is required to handle disper-
sive [11–15], anisotropic [16] and nonlinear [17] structures.

In the second group of methods, which are referred to as ‘‘spec-
tral’’, time shifted periodic condition (2) is replaced by the com-
plex Bloch boundary condition F(t + a sin θ/c) = F(t) exp(iα),
formulated for the time domain. Usingmonochromatic initial inci-
dent wave F(t) = F(0) exp(iωt) with the frequency ω satisfying
α = ωa sin θ/c one can get results for a single frequency per
simulation [18]. To obtain the results for a wider frequency range
one can apply a non-monochromatic incident wave. In this case
the time-domain solution is regarded as an intermediate result.
At the final stage of the calculation one should transform into
the frequency domain where results for a range of (ω, θ ) pairs
can be extracted [19–22]. The time-dependent solution for the
fields is not available in spectral methods, which is a serious draw-
back for such applications, as molecular nanopolaritonics [23,24],
where the charge transport between nanoparticles and molecules
is studied and a coupled system ofMaxwell/Schrödinger equations
should be solved [24–26]. Direct time-dependent FDTD simulation
is also necessary within novel FDTD approaches to solve Maxwell-
Liouville equations for single quantum emitters (such as quantum
dots or single molecules) [27].

In the third group of methods additional unit cells are intro-
duced to simplify getting the time-advanced field values. In the
multiple unit cells method [28,29] these cells are added along the
direction from which the incident wave arrives. This sequence of
cells is terminatedbyPMLs. The terminating cell is a source of error,
the magnitude of which depends on the number of additional cells
and the incidence angle. In the angled-update method [1] mesh
points are updated non-simultaneously, which allows one to ob-
tain the future field values from the time-advanced adjacent cells.
The drawback of this method is a restriction to small angles (in 3D
case the angle of incidence is limited to 35°).

In our previous workwe introduced a newmethod for the anal-
ysis of periodic structures at oblique incidence [30]. This method
cannot be classified into any of the presented above groups since
it is based on a different principle. Our method implies perform-
ing several FDTD numerical experiments, which we call iterations
later on. Field values at the periodic boundaries are recorded dur-
ing each iteration. It gives the key to a solution of the problemwith
the advanced field values: even if they are unknown at the current
iteration, they are known at the previous one since field history
have been recorded. Time shifted field values from the previous it-
eration can be used at the current iteration as an approximation for
the advanced fields. As we have shown in our previous work [30],
the difference between the true advanced fields and the approx-
imate ones decreases from iteration to iteration, so the iterative
process converges. To manage this iterative process we use ‘‘soft’’
Total field/Scattered field (TF/SF) correction [1] instead of ‘‘strong’’
periodic conditions (2). This TF/SF correction acts like periodic con-
ditions (2) after a number of iterations required for convergence.

In the previous work we have been focused on the basic
principle of iterative method and its verification. In this paper we
describe its numerical implementation.

The paper is organized as follows. In Section 2 we present the
main idea of themethod. In Section 3wediscuss how to implement
the method in an FDTD code. In Section 4 we illustrate the work of
the method for some physical examples. In Sections 6 and 5 we
discuss the performance and convergence issues. In Section 7 we
summarize our results.

2. Method

In the following we will refer to the FDTD contour path
approach and the Total field/Scattered field (TF/SF) technique [1],
so we need to review these methods here.

FDTD discretization of Maxwell’s equations can be derived us-
ing the contour path approach. This approach is helpful for formu-
lation of TF/SF technique which is a part of our iterative method.
FDTD discretization proposed by Yee [3] does not necessarily need
to be formulated within this approach, however, we will still use it
to describe our iterative technique.

Contour path approach deals with the integral formulation of
Maxwell’s equations:
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where the line and surface integrations are performed over an
arbitrary flat contour l in space and its internal enclosed area S
correspondingly. Here for simplicity we consider linear, isotropic,
nondispersive materials. Eqs. (4) may be rewritten in a discretized
central-difference form:
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where ∆t is the time step, the subscript c denotes the field mea-
sured at the center of the contour (output point) and the subscript
i denotes the field observed at the edge centers along the contour
(input points) (see Fig. 2). Eqs. (5), (6) are used to express the fields
at the next time step via the fields at the previous step:
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Fig. 2. H-contour used to update E field in its center. Direction of the electric field
E is assumed to be perpendicular to the contour plane.

Eqs. (7), (8) are written for the projection of the field to the contour
normal (left-hand-side and first term of the right-hand-side) and
to the contour edges (last term of the right-hand-side).

In the most common FDTD formulation given by Yee [3], E-
and H-contours are aligned with a uniform rectangular mesh and
shifted at the half of themesh step. In this case the relations (7), (8)
can be simplified to the standard Yee’s discretization [1,3]. For
example, discretization of the Ampere’s law (7) for H-contour
parallel to the yz-plane takes the form
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where ∆ is the mesh space step, upper index corresponds to the
time step (t = n∆t) and bottom indices i, j, k correspond to the
field component location at the Yee mesh. Formally, one does not
need to refer to contours when working with the Yee mesh, how-
ever we still use the contour notation since it is useful in under-
standing such FDTD concepts as TF/SF or boundary conditions.

Relations (7), (8) constitute the basic explicit FDTD update
procedure (Yee discretization scheme for the special case of Yee
mesh), where the fields at the output point of the contour are
updated using the fields at the input points of the contour. We use
the terms ‘‘input’’ and ‘‘output’’ for the locations of the contour to
underline their role in the update procedure.

One of the ways to generate an incident electromagnetic
wave in FDTD is applying the Total field/Scattered field (TF/SF)
technique [1]. Within the TF/SF framework, one divides the
computational volume into the total field (TF) and scattered field
(SF) regions (at Fig. 1 the TF region is marked by dashed lines).
The update equations in the SF zone are solved for the scattered
field which is a difference between the total field and the known
unscattered incident field. The TF zone contains scattering objects
and the update equations for the total field are solved there. The
update equations have exactly the same form (7), (8) in both zones,
except for the places where the update contour passes the TF/SF
boundary. The output point and the input points of such a contour
may be classified to be TF or SF points according to their positions.
If the update involves input points of the type different from the
type of the output point, then a corresponding correction (incident
field at the input point) is added or subtracted:
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where Ebulk,Hbulk is the result of basic update procedure at the right
hand of (7), (8) (Yee discretization scheme for the case of the Yee
Fig. 3. Iterative method geometry. 1, 2—generating (TF/SF) borders where
transferred fields are taken as a source; 1′ , 2′—corresponding image locations; 3—
TF/SF border with analytic oblique source.

mesh), Einc, Hinc is known incident field, ‘‘+’’ sign is used when the
output point belongs to the TF zone and ‘‘−’’ otherwise.

The TF/SF technique is commonly used to simulate periodic
structures for the normal incidence case. Typical scheme assumes
generation of a plane wave impulse at the TF/SF border and
applying periodic boundary conditions (1) (see Fig. 1). In this
scheme the incident wave H i

inc(t), E
j
inc(t) is analytically known in

both time and space. As we discussed before, direct application of
the periodic boundary conditions (2) for the oblique incidence case
is a problem since advanced fields are unknown.

In our method, instead of using the periodic boundary condi-
tions, we use a TF/SF correction (9), (10) at the border of the unit
cell. The corresponding geometry is shown in Fig. 3. For simplicity
we assume that the plane of incidence is parallel to one of the lat-
tice translation vectors, sowe can keep the regular periodic bound-
ary conditions in this direction (which is perpendicular to the
figure plane). Border 3 represents the standard TF/SF boundary that
generates the known obliquely incident plane wave. We also ap-
ply TF/SF-like wave generation at the side borders x⃗1 and x⃗2 using
the time-shifted field evolution obtained from the image points at
opposite borders x⃗1′ = x⃗1 + a⃗ and x⃗2′ = x⃗2 − a⃗. As it is already
mentioned, our method implies performing several FDTD experi-
ments (iterations). For the negative time shift (field value from the
past), fields from the current iteration qmay be used. For the time-
advanced fields we use the recorded evolution from the previous
iteration:

Fq(x2, t) = Fq(x2′ , t − δt), (11)

Fq(x1, t) = Fq−1(x1′ , t + δt), (12)

where δt is defined in (3), and subscript q is used for the iteration
number. Note that the distance between borders 1 and 2 is taken
greater than the period a by some span ∆a of several mesh steps
∆ to separate image points and the TF/SF borders. The purpose
of this is to have a clear and independent definition of all TF/SF
zones for all kinds of the applied field corrections. The borders 1,
2 and 3 differ only by field Finc used to define the correction term
for (9), (10). For border 3, Finc is the obliquely incident plane wave
(known analytically), for borders 1 and 2 Finc is the field recorded
at the corresponding image points during the current (if the time
shift is negative) or previous (if the time shift is positive) iteration.

The iterative process is illustrated in Fig. 4. One can see that
as soon as the final self-consistent solution is obtained at some
iteration q, the scattered fields both to the left of TF/SF border 1 and
to the right of TF/SF border 2 vanish. Therefore these borders act as
periodic boundary conditions (2) with the proper time shifts. As a
result, field evolution does not change at the each next iteration
Eq+i(r, t) = Eq(r, t), Hq+i(r, t) = Hq(r, t), i > 0, which means
that simulation can be stopped.
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Fig. 4. The first and the fifth iteration of the experiment with oblique incidence on
ametallic plate, θ = 45°. The incidentwave is a planar pulse of a finite duration.We

useGaussian function: Einc(r, t) = G(t− k·r
c ),G(t) = exp


−


t−t0
tw

2

, where r and

t are coordinates in space and time, k is direction of the incident pulse propagation,
c is speed of light, t0 and tw are some parameters. The incident and reflected waves
are clearly seen on the fifth iteration: the incoming incident wave propagates from
the bottom left to the top right, the reflected wave propagates from the top left to
the bottom right. Arrows correspond to wave propagation, dotted lines are parallel
to the wavefront. Incident wave is generated by TF/SF border 3 (it obviously does
not propagate below this border). Wave reflected by metal plate propagates below
TF/SF border 3 to the Scattered Field region. While solution is found, our technique
acts as periodic boundary conditions (with time delay) applied at the borders 1,
2. Therefore, both waves (incident and reflected) do not propagate outside these
borders.

The video illustration of our technique is available online [31]
as a movie showing a sequence of iterations in simulation of a
photonic crystal slab at oblique incidence.

3. Implementation

Typically, the FDTD simulation consists of two stages: initializa-
tion stage,where coefficients for theupdate equations are specified
according to the calculated geometry (structure, sources, boundary
conditions), and calculation stage. Below we describe the way our
method can be implemented at these two stages.

We distinguish between the basic FDTD contour update proce-
dure,whichwe call the ‘‘bulk’’ update and the special updates (con-
tours inside PMLs, contours passing TF/SF boundaries, etc.). The
special updates may be formulated as corrections or fixes, applied
additionally to the basic update. The reason to this distinction is
that the number of contours (mesh points) participating in fixes is
usually small compared to the total number of contours, so it is nu-
merically more efficient to group similar calculations together into
fix-specific loops. Also, because of the linearity of Maxwell’s equa-
tions, most of the fixes turn out to be independent of each other
and may be placed in the structurally independent parts of code.
An example of such are the TF/SF and ‘‘oblique’’ fixes discussed be-
low. This ‘‘fix’’ principle has been followed by in the parallel C++
Electromagnetic Template Library (EMTL) code [32,33] where the
iterative oblique techniquewas first implemented. In thiswork our
aim is to describe the implementation of the method in a code-
independent way. In this context the term ‘‘fix’’ should be under-
stood as a procedure, applied to a selected set ofmeshpoints before
(or after) the normal time step is done. This way any existing FDTD
code may be modified to implement the iterative oblique method,
provided the programmer has direct access to themesh and knows
how the memory indices relate to the spatial locations of the field
components stored in the mesh memory.

3.1. Initialization

At the geometry setup stage special contours requiring correc-
tion (9)–(12) are found and a selected set of points for a ‘‘fix’’ is
formed. This set holds recorded data needed for efficiently apply-
ing corrections at every FDTD time step. For the TF/SF and oblique
fixes this can be done by the following procedure. Points (output
or input) forming each contour are marked with two flags:

(a) ‘‘TF/SF’’ flag which is turned on if a point is located in the TF
zone (in Fig. 3 it lies above the generating TS/SF border 3),
Fig. 5. Zoomed part of bottom-left side of Fig. 3. Pairs of points that may form
a contour (filled circles) are connected by lines. Left, each point is labeled by
two numbers. The first number corresponds to the TF/SF flag, the second number
corresponds to the oblique flag (1—on, 0—off). Right, each point is labeled by
sequence of symbols that specify the correction which is applied if this point is an
output point, and adjacent point in the pair is an input point. T corresponds to TF/SF
correction and O corresponds to oblique correction. Plus or minus sign ± is the one
used in (9), (10). Both corrections are applied to output points in periodic cell which
are connected to adjacent input points by diagonal line at this picture. However, in
the case of the Yee mesh, TF/SF borders are aligned with mesh directions, and there
are no ‘‘diagonal’’ lines in the contours.

(b) ‘‘oblique’’ flag which is turned on if a point lies inside the
periodic cell (between borders 1 and 2 in Fig. 3).

If an output and an input points differ by the TF/SF flag and
the oblique flag of the output point is turned on, then the TF/SF
correction is applied. If an output and an input point differ by the
oblique flag, then the oblique correction is applied, irrespectively of
applying or not applying the TF/SF correction. The procedure used
to specifywhich correction should be applied, is illustrated in Fig. 5.
The conventional TF/SF correction is applied in its usual way and
we are not considering its ‘‘fix’’ procedure in details here.

In the case of oblique correction one should record the following
data for each input point having different ‘‘oblique’’ flag with
respect to the output point of the contour:

(i) the index in the mesh array where the output point field
value is stored,

(ii) coefficients li∆t
εS in (9), (10),

(iii) the image point position.
Note that the image point positionmay be recorded in form of a

reference to an auxiliary memory buffer (discussed below) related
to the image point of interest.

3.2. Calculation

The key difference between the conventional TF/SF and the
oblique TF/SF correction is the usage of the time-shifted boundary
conditions in the form (11), (12) at the TF/SF oblique borders
before applying the correction (9), (10) itself. For this purpose
it is necessary to have access to the time-shifted fields obtained
at image borders 1′ and 2′ during the calculation. This can be
implemented via auxiliarymemorybuffers for each type of fields (E
and H), responsible for storing the retarded fields at image border
2′ from the current oblique iteration (11) and the advanced fields
at image border 1′ from the previous iteration (12). We will refer
to these buffers as c-buffer and p-buffer respectively. The buffers
collect field values at the image points, and subsequently are used
to apply the oblique fix (9)–(12). For each type of field (E orH) and
time shift±δt = ±a sin θ/c , see (3), separate buffers are allocated.

The memory for the buffers is allocated before the calculation
stage starts. Each buffer stores a certain part of the signal history for
its respective image border. Therefore it is convenient to organize
the buffers as a time-ordered sequence of space slices. The size
of each space slice is equal to N = NyNz , where Ny and Nz are
number of themesh points along the y and z direction respectively.
The total number nc of space slices in the c-buffer should only be
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large enough to store the fields evolution from image border 2′ in
a relatively short time interval between t − δt and t , whereas the
total number np of space slices in the p-buffer should allow for the
storage of the fields evolution from image border 1′ throughout
most of the calculation at a given oblique iteration. Thus, the
p-buffer requires considerably more memory than the c-buffer.

Let us now determine the numbers nc and np. First of all, we
should define how the time shifts are represented on the time grid.
Let k be the number of the current time step, corresponding to
the current time moment tk = k∆t . At each oblique iteration, the
calculation consists of n + 1 time steps, enumerated from k = 0
to k = n, where n∆t = T is the duration of the calculation. We
define an integer number m ≥ 0, such that δt = (m + τ)∆t ,
where 0 ≤ τ < 1. Then the field value at t ± δt can be taken as
a linear interpolation between tk±m and tk±(m+1) at the time mesh.
Then (11), (12) can be rewritten in the following way:

Fq(x2, tk) = (1 − τ)Fq(x2′ , tk−m) + τFq(x2′ , tk−m−1), (13)

Fq(x1, tk) = (1 − τ)Fq−1(x1′ , tk+m) + τFq−1(x1′ , tk+m+1). (14)

We should note here, that the fields at the image points are
assumed to be zero in the case t < 0 or t > T . Thus, the number of
space slices in the c-buffer nc = m̃+1, where m̃ = m (m̃ = m+1)
for τ = 0 (0 < τ < 1). The number of space slices in the p-buffer
is chosen equal to the total number of time steps np = n + 1. The
reason for this choice will be clarified later. The space slices in the
c- (p-)buffer are enumerated from 0 to nc − 1 (np − 1).

The access to the buffers is organized in such a way, that the
field values that have been used, are overwritten with the new
values from the current iteration, which will be used later.

The c-buffer is only concerned with the current oblique
iteration (see (13)) and should always be reset to zero before each
next iteration starts. Let i0 = 0 be the starting index in the buffer.
Let j = i0 + k indicate the current space slice in the buffer, where
the field values at border 2′ from the current kth time step are
written. It is convenient to represent the buffer as a circle (Fig. 6),
with (j − l)th space slice corresponding to the time moment tk−l,
where l = 0, 1, . . . , m̃, and (j − l) is taken modulo nc . Thus, we
have

(j − m̃)mod nc = (j − m̃)mod (m̃ + 1)
= (j + 1)mod nc, (15)

j − (m̃ − 1)

mod nc =


j − (m̃ − 1)


mod (m̃ + 1)

= (j + 2)mod nc . (16)

So the time-shifted fields at tk−m̃ and tk−(m̃−1) appear in (j +

1)mod nc and (j + 2)mod nc space slices respectively. Now the
algorithm for the c-buffer at the kth time step can be written in
the following way:

(a) the current fields Fq(x2′ , tk) are written to the jth space slice
in the c-buffer (where j = kmod nc can be visualized as rotating
around the circle);

(b) the basic update procedure (7), (8) is performed;
(c) the retarded fields Fq(x2′ , tk−m̃) and Fq(x2′ , tk−(m̃−1)) are read

from (j + 1)mod nc and (j + 2)mod nc space slices of the c-puffer
and used to found interpolated value of Fq(x2, tk) according to (13)
(note that k − m̃ = k − m if τ = 0 and k − m̃ = k − m − 1 if
0 < τ < 1);

(d) the oblique correction (9), (10) is applied.
Note, that in this algorithm, once the retarded field Fq(x2′ , tk−m̃)

has been read from the buffer, it is overwritten with the current
field Fq(x2′ , tk+1) at the next time step. Also, the condition, that
the field values at t < 0 be zero, is automatically fulfilled, as
the buffer is reset to zero before each next oblique iteration. In
case of the normal incidence the algorithm is reduced to applying
conventional periodic boundary conditions (the time shift δt = 0
in (3) and nc = 1).
Fig. 6. The buffer as a sequence of space slices, nc,p—their number, i0 is the starting
index. At each time step k, field is recorded to j slice, j = (i0 + k)mod nc,p . Slices
j + 1 and j + 2 are used to interpolate field value at time tk ± δt according to (13),
(14). Interpolated field is applied in oblique fix (9), (10).

The p-buffer is concerned with the previous oblique iteration
and should only be set to zero before the start of the first iteration.
Similarly to the c-buffer, we use the circle geometry for the
p-buffer. At the current time step k the current fields at the image
border 1′ are written to a j = i0 + k space slice, while the fields
recorded during the previous oblique iteration are read from (j +
1)mod np and (j+2)mod np space slices. The difference consists in
shifting the starting index i0 bym− 1 positions counter-clockwise
after each oblique iteration, as shown in Fig. 6. Such shift ensures
that (j + 1)mod np and (j + 2)mod np space slices correspond to
the advanced fields at tk+m and tk+m+1 from the previous oblique
iteration, as j+1 = j−(m−1)+m and j+2 = j−(m−1)+m+1.
Thus, the algorithm for the p-buffer at each oblique iteration can be
formulated as described below:

The starting index i0 = 0 before the first oblique iteration
q = 1;

At qth oblique iteration, at kth time step:
(a) the current fields Fq(x1′ , tk) are written to the jth space slice

in the p-buffer (where j = (i0 + k)mod np);
(b) the basic update procedure (7), (8) is performed;
(c) if k ≤ n − m, the advanced fields Fq−1(x1′ , tk+m) and

Fq−1(x1′ , tk+m+1) are read from (j + 1)mod np and (j + 2)mod np
space slices of the p-buffer and used to found interpolated value of
Fq(x1, tk) according to (14), otherwise they are assumed to be zero;

(d) the oblique correction (9), (10) is applied.
At the end of each oblique iteration starting index is shifted

i0 = (m − 1)(q − 1)mod np.

4. Tests

We implemented the iterative method as a part of the parallel
C++ Electromagnetic Template Library (EMTL) [32,33]. To test our
methodwe calculate reflectance fromdifferent periodic structures.
To reduce the error caused by the staircasing effects, the subpixel
smoothing technique is applied in all cases considered [34].We use
Convolution PML formulation [1] since it allows for submerging a
dispersive medium such as metal. To reduce undesired numerical
reflection from the PMLs we use additional back absorbing layers
technique [35]. We use incident plane wave impulse in a form

(t − t0) exp

−


t−t0
tw

2

. Parameters t0 and tw are chosen to cover

considered spectral range by incident impulse.

4.1. Plasmon formation in a thin gold film

In the first test we consider a thin gold film (width d = 50 nm)
between air and glass (n = 1.5) semi-infinite interfaces. We



1278 I. Valuev et al. / Computer Physics Communications 185 (2014) 1273–1281
Fig. 7. Reflectance from a thin gold film (width d = 50 nm) between air and glass
(n = 1.5) semi-infinite interfaces. Different angles of incidence θ are considered,
p-polarization. We model gold film as a periodic structure with period a = 2 µm
(periodicity direction is formed by intersection of gold surface and incidence plane).
Subpixel smoothing method [34] is used to improve accuracy of calculation.

model gold film as a periodic structure with period a = 0.4 µm
(periodicity direction is formed by intersection of gold surface
and incidence plane). Experimental data on the gold dielectric
permittivity ε(ω) is taken from [36,37]. The frequency dependence
of ε(ω) is assigned in FDTD by considering a modified Lorentz
approximation where the dielectric polarization depends both on
the electric field and its first time derivative [38]:

ε(ω) = ε∞ −
ω2

D

ω2 + iωγD
+

2
p=1

∆εp(ω
2
p − iγ ′

pω)

ω2
p − 2iωγp − ω2

(17)

with (ωD, γD, ωp, γp and γ ′
p are in 1/µm, and the speed of light is

unity): ε∞ = 1.14, ωD = 7, γD = 0.057, ∆ε1 = 0.23, ∆ε2 = 4.48,
ω1 = 2.07, ω2 = 2.54, γ1 = 0.237, γ2 = 1.25, γ ′

1 = 4.5,
γ ′

2 = 2.71. Modified Lorentz approximation is implemented in
FDTD using auxiliary differential equation (ADE) technique [38].
Fig. 8. The same as Fig. 8, but period a = 0.4 µm. Angle of incidence θ = 45°,
p-polarization. Subpixel smoothing method [34] is used to improve accuracy of
calculation.

The considered structure represents a standard Kretschmann
configuration used for the surface plasmon excitation [39,40]. In
Fig. 7, we present comparison between reflectance calculated by
our iterative technique and the classical transfer matrix formal-
ism [41]. Note that our technique remains stable for arbitrary an-
gles (Fig. 7), and results for lower angles converge faster. Surface
plasmon resonancemanifests itself as a dip in the reflectance spec-
trumwhen the p-polarized light is incident from optically thick in-
terface (glass) at a particular angle (θ = 45°).

As discussed in Section 5, convergence can be improved by
using larger period a. At the same time, the usage of smaller period
a can reduce memory requirements but slows down convergence.
For example, simulating period a = 0.4 µm for θ = 45° requires
more iterations for convergence (compare Figs. 7 and 8). Note that
in our test case, the period a for the simulation can be chosen
arbitrarily, since the gold film is homogeneous in lateral direction.
If there is a real periodicity (e.g. photonic crystal slab), a could be
chosen as a single period of the structure, or as a multiple number
of periods.

Using subpixel smoothing technique [34] greatly improves the
accuracy of our calculations compared to the staircase model (we
use mesh step ∆ = 5 nm). Results obtained without subpixel
smoothing (staircase model) produce the wrong reflection mini-
mum position. This is connected with the fact that the incident
p-polarized electric field is not aligned with the gold interface
(Fig. 8). To improve the accuracy subpixel smoothing should be
used which takes the exact location of the interface boundaries for
both magnetic and electric fields into account.

4.2. Silicon textured antireflective coating

In the second test we calculate reflectance from a silicon
textured antireflective coating [42–44] at oblique incidence (angle
of incidence θ = 45°, s-polarization). Parameters for the coating
are taken from [42]. In this work antireflective properties of
textured coatings were investigated for a wide range of size-to-
wavelengths ratios including long- and short-wave limits (where
effective medium and geometric optics approximations are used
along with FDTD) to find the optimal texture size. Simulated
structure consists of an infinite silicon slab with silicon cones on
the top of it. The cones of the radius R = 0.15 µm are arranged in
a close-packed triangular lattice with the period Λ = 0.3 µm. The
height of each cone is d = 0.5 µm. Triangular lattice translation
vector is parallel to the incidence plane. The mesh step used in
the calculation is ∆ = 10 nm. A scheme of the FDTD simulation
geometry is shown in Fig. 9. Note that we extend the substrate
inside the left and right PMLs which is different from Fig. 4 where
the plate is limited by TF/SF oblique borders. As we discuss in
Section 5, extension of the structure beyond oblique TF/SF borders
does not affect the final results but may improve convergence
speed.
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Fig. 9. Iterative method geometry for simulation of silicon textured antireflective
coating at oblique incidence (relative sizes are not preserved). The cones of the
radiusR = 0.15µmare arranged in a close-packed triangular latticewith theperiod
Λ = 0.3 µm. The height of each cone is d = 0.5 µm. Triangular lattice translation
vector is parallel to the incidence plane. The mesh step used in the calculation
∆ = 10 nm. 1, 2—generating (TF/SF) borders where transferred fields are taken
as a source; 1′ , 2′—corresponding image locations; 3—TF/SF border with analytic
oblique source; 4 – Position where reflected field is recorded.

Fig. 10. Reflectance from antireflective textured coating formed by silicon cones of
the radius R = 0.15 µm and height d = 0.5 µm on the top of the silicon substrate.
Cones are arranged in a close-packed triangular latticewith the periodΛ = 0.3µm.
Angle of incidence θ = 45°, s-polarization.

Experimental data on the silicon dielectric permittivity ε(ω)
is taken from [45]. Fitting of the gold dielectric function is taken
from [38] in the form

ε(ω) = ε∞ +

2
p=1

∆εp(ω
2
p − iγ ′

pω)

ω2
p − 2iωγp − ω2

(18)

with (ωp, γp and γ ′
p are in 1/µm, and the speed of light is unity):

ε∞ = 1, ∆ε1 = 8.93, ∆ε2 = 1.855, ω1 = 3.42 (corresponding
to wavelength λ1 ≈ 0.292 µm), ω2 = 2.72 (λ2 ≈ 0.368 µm),
γ1 = 0.425, γ2 = 0.123, γ ′

1 = 0.087, γ ′

2 = 2.678. This model
provides an accurate fit to response of bulk crystalline silicon to
sunlight over the wavelength range from 300 to 1000 nm, while
conventional Debye, Drude and Lorentz approximations fail. Fit-
ting of silicon dielectric function is found with the help of the Mat-
Lab program [46] provided for open access.

Calculated reflectance from the textured coating is shown in
Fig. 10. One can see that results converge after 10–50 iterations,
and the reflectance for smaller wavelengths converges faster.

5. Convergence

Numerical examples from Section 4 demonstrate that calcu-
lated spectrum converges to the solution after some number of it-
erations. Final solution does not change at the each next iteration.
This infers a stopping criterion for our technique: simulation can
be stopped, if the field does not change at the each next iteration
(difference between fields at the current and next iterations is neg-
ligible, within machine accuracy). Obviously, there is no need to
apply this criterion for field at the each mesh point. One can ob-
serve change of the field evolution at some chosen point (Fig. 11)
and stop the simulation while it does not change at the each next
iteration. Note that when convergence is obtained, field does not
change at the each next iteration.

We can represent the field at each qth iteration as a sum Fq =

Fconv + δFq, where Fconv(t) is converged solution, δFq is some error
signal. In our previous paper [30] we showed that the error signal
δFq at each next iteration shifts to the future by time interval
proportional to a/c (see Fig. 3 and corresponding comments at
Ref. [30]):

δFq+1(t) ≈ δFq(t − τ), (19)

where τ ∼ a/c and a is the period of the considered unit cell. We
do not use equality sign in (19), since this is just estimation, and
shape of the function δFq(t) changes as well. Obviously,

δFq(t) = 0, t < 0. (20)

Therefore, nonzero part of the function δFq(t) if shifted to the
future at the each time iteration. This is illustrated in Fig. 11: one
can see no difference between 30 and 40 iteration, thus, δFq(t) = 0
for q > 30 within the given time range.

Let us estimate iterations number niter, necessary for the
solution and the error signal to be completely separated within
time of the FDTD experiment t < T :

δFq(t) = 0, Fq(t) = Fconv(t), q ≥ niter. (21)

As follows from (19), (20), niter is proportional to cT/a. Field does
not change at the each next iteration such as q ≥ niter, and
converged solution is found Fq(t) = Fconv(t) (within time t < T ).

From our experience, niter is around several times of the value
of cT/a. For example, in our first numerical test from Section 4.1,
cT = 10 µm, a = 2 µm, cT/a = 5, and niter varies from 5 to
70 (approximately) for angles 30° ≤ θ ≤ 75° (see Fig. 7). In
our second numerical test from Section 4.2, cT = 20 µm, a =
√
3 · 0.3 µm, cT/a ≈ 40, and niter ≈ 100 for θ = 45° (see Fig. 10).
If the incident light is efficiently absorbed in the structure, the

value niter can be small enough (5–10) since the error signal ampli-
tude decays at each next iteration [30]. Note that the spectrum of
the error signal δFq usually covers longer wavelengths [30], there-
fore convergence for these wavelengths is slower (see Figs. 7 and
10).

In general, the time duration of the FDTD experiment T should
be chosen to be sufficient for scatteredwaves to leave the structure
and be absorbed in PMLs. If the structure is not absorptive and its
size in longitudinal direction is large compared to the characteristic
incident wavelength, this time T and therefore the value of niter
are large. However, using several periods of the structure as one
FDTD cell can improve the convergence, since niter is inversely
proportional to the FDTD cell lateral size a (see corresponding
discussion for the first numerical test from Section 4.1 and Figs. 7
and 8).

Extension of the structure beyond oblique TF/SF borders
towards PML (as in Fig. 9) does not affect the results but may
improve convergence speed. When convergence is reached, the
structure beyond oblique TF/SF borders does not play any role,
since these borders act as the (time–space) periodic boundaries,
and we are ultimately interested in the fields inside these borders
(simulated region). The main role of the structure outside the
oblique TF/SF borders (scattered field zone) isminimizing spurious
reflection in the direction towards the simulated region (total
field zone). In some cases, convergence of the oblique iterations
can be improved when the scattered field zone contains the
nearest periodic image of the simulated cell (terminated by
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Fig. 11. Evolution of reflected electric field (component parallel to incident
polarization) for the second numerical test from Section 4.2, see Figs. 9 and 10. Field
is recorded at the tomiddle of the line 4, Fig. 9. One can see that field evolution does
not change after 30 iterations within presented time range.

PMLs) since then the reflection from the nearest image acts as a
good approximation for the fields on the TF/SF oblique borders.
Generally convergence can be achieved independently on the
structure beyond oblique TF/SF borders, even if PMLs in the lateral
direction are absent. However, in the latter case the reflectingwalls
should be placed far enough from the oblique TF/SF borders and
convergence is rather slow, so the usage of lateral PMLs is preferred
for our technique.

We observed that in some cases the error signal amplitudemay
increase at each next iteration. This problem could be related to
the long time instability in PML layers, arising in some FDTD setups
with mixed periodic/absorbing boundary conditions [35]. It can be
remedied to some extent by using additional back absorbing layers
technique [35] or applying larger distance between the structure
and PMLs. For example, this distance is taken to be 40 mesh steps
for our second numerical test (Fig. 9), while using smaller distance
could lead to instability during simulation.

Lastly, according to our experience, in some cases using the
retarded fields from the current iteration may result in instability
of the calculation. If this is the case, the c-buffer cannot be used and
the p-buffer should be used instead to take the retarded time shift
from the previous iteration aswell. This is the reason for storing the
full signal history in the p-buffer (np = n+ 1), so that one can take
retarded time shift (δt ≤ 0) from the previous iteration using the
same algorithm, as for the advanced fields. In this case i0 decreases
after each iteration (sincem−1 < 0) and circles clockwise around
the buffer (Fig. 6).

6. Performance

To estimate the computer memory resources required for our
technique, we compared it with the normal incidence calculation
(see Table 1). We simulated the antireflective textured coating
of the same geometry as in Section 4.2 (Fig. 9). The mesh step
∆ = 10 nm, the total number of time steps n = 8000. The
mesh for the oblique incidence case includes CPML and additional
space at the light propagation direction (compare Figs. 1 and 3 or
Fig. 9). One time step for the oblique incidence case is two times
slower than that for the normal incidence case, mostly because
of the time used to update extended mesh in oblique incidence
Table 1
CPU and memory recourses for the second numerical test from Section 4.2, normal
and oblique incidence cases. We assume that solution is found after 30 iterations
(see Fig. 10). x is CPU time per one iteration for the case of normal incidence. This
time depends on the computer architecture.

Normal Oblique
incidence incidence

Mesh size 20 Mb 45 Mb
p- and c-buffers size – (800 + 8) Mb
CPU time per one iteration x ≈2x
Number of iterations 1 ≈30
Total calculation CPU time x ≈60x

setup (p-buffers and c-buffers consume only 5% of the CPU time).
The total mesh memory size for the normal incidence cases is 20
Mb, while that for the oblique incidence case is 45 Mb (including
memory for CPML and ADE technique for dispersive media). The
p-buffers and c-buffers (forE andH fields) require 800Mband8Mb
correspondingly.We see that, that p-buffer size ismuch larger than
themeshmemory size. However, since the data flowper FDTD step
from the buffer is not very intensive, disk storagemay be efficiently
utilized for buffering.

7. Conclusion

In this work we report an efficient implementation of the itera-
tive FDTD technique for simulation of periodic structures at oblique
incidence. This technique is free from themajor drawbacks of other
methods, such as stability problems in case of sharp incidence an-
gles, lack of a direct time domain evolution, and need for large
meshes. However it requires performing several numerical experi-
ments instead of one and additional memory storage for the mem-
ory buffers.

Compared to a single numerical FDTD experiment the proposed
iterative technique requires up to 50 times more computational
resources (CPU and memory) to obtain a time domain solution
for a single angle of incidence (for example, see Table 1). The
memory requirement is not very restricting because of the limited
data flow per time step from the buffer memory. In spite of
these constraints, the proposed technique is useful as a method
with (a) convergence at all incidence angles, (b) ability to treat
dispersive and anisotropic materials, (c) direct time-dependent
field solution. It may be recommended if one needs to obtain the
properties of a layered structure for a small number of incidence
angles or requires a time domain form for the electromagnetic
field inside the structure. Note that the latter is the case when
coupling FDTD to the other time domain models like in case of
molecular nanopolaritonics [23,24], or plasma particle in cell [47].
The presented technique can be used together with the hybrid
FDTD transfer matrix method [48] to calculate photonic band
structure for periodic structures. Examples of application of our
iterative technique can be found at Electromagnetic Template
Library (EMTL) webpage [32].
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