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Abstract. In the present work we propose a strategy for developing
reusable multi-model simulation library for solving Finite-Difference
Time-Domain (FDTD) problem for Maxwell’s equations. The described
EMTL (Electromagnetic Template Library) architecture is based on the
selection of a small number of primitive low-level physical and numerical
concepts which are used as parameters and building blocks for higher-
level algorithms and structures. In the present work we demonstrate
that a large set of FDTD techniques may be formulated using the same
primitives. The basic concept for this representation is a discretized field
contour entering the integral form of Maxwell’s equations. We also de-
scribe the proposed architecture in terms of FDTD C++ template class
library and discuss the performance and the usage of this library for
various FDTD-based simulations.

1 Introduction

Interaction of electromagnetic fields with periodical materials is an important
phenomenon in different device applications, such as radio antennas, wave con-
verters, filters, etc. Recently a new field of application of periodical systems in
visible optical wavelength range was proposed [1]. These systems are generally
called as photonic crystals, that is, systems which are composed of a periodic
arrangement of dielectric or metal material in two or three dimensions [2]. Com-
puter modeling of such periodical systems is a power tool in design of new
optoelectronic devices with the desired properties.

A general solution method of Maxwell’s equations, which describe the evolu-
tion of electromagnetic waves in periodical materials, is the finite difference time
domain (FDTD) method [3]. Since introduction in 70th years of the previous
century this method became popular due to it certain advantages: (a) simplicity
of explicit numerical scheme, (b) applicability to different geometries (only grid
should be adapted), (c) explicit description of non-linear materials properties,
(d) natural description of impulsive regimes. The inevitable disadvantages of this
method evidently result from the above advantages: (a) large memory require-
ments for fine meshes; (b) strong relationship between time and space steps. The
fine features of a considered system can require dense mesh for accurate descrip-
tion, which in turn, results in large memory requirement. For example, accurate
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description of inverse opal structures with thin metal necks between voids may
require fine mesh with cell sizes significantly smaller than characteristic field
decay length in the metal. This results in large memory resources for fine mesh
and makes corresponding calculations quite expensive.

Several approaches were proposed to overcome the disadvantages of the FDTD
method [3]. In particular, using contour-path formulation [4] of Maxwell’s equa-
tions it was possible to treat accurately sub-cell features without reducing FDTD
cell sizes. The more general solution of efficient treatment of strongly non-
homogeneous systems is to use non-uniform grids [5]. However, available wide-
spread implementations of FDTD method (such as Meep [6], XFDTD [7],
CFDTD [8]) have only limited support of these advanced FDTD methods.

In this work we present a general systematic implementation of FDTD method
(called EMTL, Electromagnetic Template Library) based on the contour path
formulation of Maxwell’s equations, which can simultaneously describe sub-cell
features and non-uniform grids. In particular, this implementation of FDTD sup-
ports both multi-block grid containers and multi level grids. Thus the total sim-
ulation grid can be represented as a set of different grids (which can in turn be
non-uniform), covering efficiently each part of the simulated system. The interpo-
lation and connection between different grids in this implementation is done using
the contour path formalism. The multi-grid basis of this FDTD implementation
provides natural parallelization strategy in the framework of domain decomposi-
tion method. Moreover, this implementation also provides full support of modern
FDTD method simulation features, such as periodical and perfect matched layer
(PML) boundary conditions, total field/scattered field subdivision of the simula-
tion cell, extended library of optical materials properties etc.

The paper is organized as following: in the second section we describe the
contour-path FDTD approach and geometry building blocks of EMTL; in the
third section the mesh interplay and parallel strategies are presented; the fourth
section gives brief idea of the EMTL implementation of the basic FDTD algo-
rithms such as TF/SF, PML, etc.; the fifth section presents some recent bench-
marks; conclusions are given in the sixth section.

2 Geometry Components of the Contour-Path FDTD

The integral form of charge-free Maxwell’s equations (c = ε0 = μ0 = 1):

∂

∂t

∫
S

BdS = −
∮

l

Edl,
∂

∂t

∫
S

DdS +
∫

S

JdS =
∮

l

Hdl (1)
∮

S

DdS = 0,

∮
S

BdS = 0 (2)

can be used as a fundamental starting point for the formulation of FDTD dis-
cretization schemes. Indeed, following contour-path approach [4], let us consider
a fixed contour in space, incircling flat polygon (Fig 1 a). For the second-order
in space approximation, usually sufficient for linear materials, equations (1) may
be rewritten in discretized central-difference form:
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The fields of different conjugated types F 1,2 = E, H are separated: the fields F c

and source currents Jc measured at the center of the contour and multiplied by
the polygon area S are at the left-hand side of (3), while the fields F l contributing
to curl and observed at the edge centers along the contour are entering the right-
hand side multiplied by edge vectors li. The permeability and loss (perm1 = ε,
loss1 = σ, perm2 = μ) are related to the left (surface) side of the equation. They
represent material properties:

D = εE, B = μH , J1 = σE + Jsource, J2 = 0. (4)

In order to make the explicit time-stepping possible, some kind of approximation,
like semi-implicit approximation

F (t) = [F (t + 0.5Δt) + F (t − 0.5Δt)] /2 (5)

F ′(t) = [F (t + 0.5Δt) − F (t − 0.5Δt)] /Δt (6)

is needed in the left-hand side of (3). Then (3) can be used to express the fields
at the next time level via the fields at the previous levels:

F c
1,2(t +

1
2
Δt) = α1,2F

c
1,2(t − 1

2
Δt) + β1,2(

∑
i

F l
2,1(t)li − JsourceS), (7)

where α1,2 and β1,2 are material-dependent update coefficients for each type of
the field. For approximations of greater orders in time or space, equations similar
to (3) may be written containing more ”reference” points at the polygon where
fields have to be known to compose the surface and the curl part of the equation;
or containing more ”time layers”.

If the contour passes the interface between different materials (Fig 1 a), an ap-
proximation of the material properties at the left-hand side is also required. The
simplest approximation of that kind is taking the material property at the center
of the contour (staircase model for Yee meshes). However, for some geometries,
subcell averaging models [9] appear to be extremely useful (see Section 5.3).

The numerical data for fields at reference contour points is stored in computer
memory which can be represented as many-dimensional vector M. To bind the
field value at any given space point x and memory locations (indices of M) the
following general interpolation expression is used in EMTL:

F (x) =
∑

i∈I(x)

ci(x) · L̂i(M), (8)

where I(x) gives (normally small) index set for a given point, ci is interpolation
coefficient. The ”memory layout operator” L̂i binds the interpolation term of in-
dex i with the memory array (Fig 1 b). Usually this operator is linear with respect
to memory elements: L̂i(M) =

∑
k αikMk. Different mesh layouts, interpolation
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Fig. 1. a) — H-contour used to update E field in its center; b) — grid points interpo-
lating the field along the contour; c) a contour crossing region boundaries

types and memory storage patterns may be fit into this expression. For example,
for 3-linear interpolation in equidistant orthogonal 3D grid N0 × N1 × N2, with
space step Δg and per-component memory layout, the interpolation set consists
of 24 elements:

I(x) = {i8k+4m0+2m1+m2}k=0,1,2; m0,m1,m2=0,1 (9)
i8k+4m0+2m1+m2 = N0N1N2k + N1N2(n0 + m0) + N2(n1 + m1) + n2 + m2

ci(x) = c8k+4m0+2m1+m2 = ek

2∏
j=0

((
xj

Δg
− nj)(−1)mj + mj), L̂i(M) = Mi,

where nj = xj mod Δg are basic grid indices for the position x, the increment
of memory pointer by one corresponds to the change in z-coordinate of the grid
(array index j = 2 changes first in memory). As it will be discussed later (Sec-
tion 5.1), memory layout may have significant influence on the code performance.

Note that (8) is usedboth for collecting the inputfieldvalues frommemorybefore
each field update according to (7) and for placing the (different) updated output
fields intomemory.Using the linearity of (8) and (3)with respect to L̂i(M), each ith
component, corresponding to the memory location L̂i(M), may be updated sepa-
rately. This allowed us to implement the interpolation expression (8) in EMTL in
most general way. However, special mesh layouts may simplify (8) greatly, reduc-
ing the number of the input/output field update combinations. For example, in the
standard Yee mesh construction [10], the index set I(x) is reduced to one compo-
nent for each update location x in the center of the contours and their edges, thus
resulting in one update combination per contour with four input memory elements
(edge centers) and one output element (contour center).

3 Design of the FDTD Simulation in EMTL

3.1 Simulation Stages and Basic Components

As any FDTD simulation, the EMTL-based application has three main com-
putation stages: (1) geometry setup and pre-processing of update coefficients;
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(2) main loop with iterative time propagation and recording of output data; (3)
processing of output data. Before describing the first two stages of the simula-
tion in more detail, we list briefly the key components of EMTL. The building
blocks of EMTL are components that are used as template parameters in higher-
level structures. These building concepts are STL-like iterators, points (vectors),
contours, bodies, interpolation forms, mesh blocks. The methods of these com-
ponents are used from the inner loops at geometry setup or time propagation
stages and implemented as inline functions for performance reasons.

The basic geometry components in EMTL are points in 3D, contours (flat
convex polygons) and continuous regions (bodies) in 3D. All bodies implement
a concept of SpaceRegion, requiring the corresponding C++ classes to define
the following functions, necessary for contour path analysis:

– testing whether a point (3D vector) is inside the region;
– for a given flat contour, return the area of a subcontour which is inside the

region;
– for a line segment connecting given inside and outside points, return the

intersection point of the body surface with the segment and the surface
normal vector at the intersection.

The last function is used in subcell models where the interface direction between
two materials is important [9]. All regions, except for the main bounding region,
may be infinite in one or more dimensions, for example a Polyhedron can contain
only one plane selecting a half-space with some material properties. Simulation in
one or two dimensions is possible by reducing the size of non-existent dimensions
to two contours and introducing periodic boundary conditions in the reduced
directions.

The meshes, or emMeshBlock objects, are the building blocks of the FDTD
model and define a set of update contours, memory layout and interpolation.
Thus, EMTL separates the mesh design task (which is itself a complicated prob-
lem) from the FDTD simulations which use a particular mesh. Practically, any
FDTD method available in EMTL may be used with arbitrary meshes and even
their combinations. The emMeshBlock-conforming classes must implement the
following key functionality:

– define a ”control region” where the mesh can provide an interpolation of
fields;

– return an interpolation for a given field type (E or H at a given location x
in the form (8), binding memory array indices and coefficients;

– define an iterator of all E and H contours composing the mesh;
– provide optimized basic bulk update function and accept basic update coef-

ficients α, β (7) for contours
– optionally accept indications to ”unused” (not updated) contours to save

memory.

Various kinds of meshes can be designed to conform to these model, includ-
ing non-uniform, unstructured and non-orthogonal ones. Note that the chain
of contours defined by the mesh must satisfy the second pair of the Maxwell’s
equations (2).
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3.2 Geometry Analysis Stage

The contour collection that is returned by emMeshBlock is analyzed at geometry
setup stage when the update coefficients for each contour are calculated. The
analysis is performed only once before the iterative update stage, therefore this
part of a simulation is less performance critical and may be generalized. The
contour analysis algorithm is the main algorithm of EMTL, it is implemented
in the most general way and does not depend on the mesh construction details.
The only requirements for the mesh is the conformal definition of a contour:
(a) contour is a sequence of points; (b) contour is flat and convex; (c) here
is a binding between contour characteristic points (center for output and edge
centers for input) and memory locations provided by emMeshBlock; (d) contour
is connected with some ”control” volume. The last contour property is used in
smoothing models only where volume averaging is required. The contour analysis
algorithm can be easily extended to include new types of equations, materials
and subcell smoothing models.

To construct the whole task geometry, the components are assembled in the
object of type emBlockContainer<mesh_type1,mesh_type2>. This is the main
”access object” of the model, it can contain arbitrary number of mesh blocks,
each of them belonging to one of the two mesh types. The emBlockContainer<>
can itself be treated as an aggregate emMeshBlock, allowing to combine arbitrary
number of mesh types in one model. The top level container must have a bound-
ing region for which boundary conditions are defined. The boundary conditions
determine the behavior when a certain contour crosses the container boundary
and some of its input points are outside. In case of periodic boundaries, these
points are reverted to the other side of the container using ”transfer fix”, while
for reflective conditions the input fields located outside are assumed to be zero.

Multiple emMeshBlock objects may be placed in the container having control
regions with different interpolation levels assigned to them. In case the meshes
intersect, the actual field update is performed in the mesh of higher level, while
the lower level meshes use interpolated values for the input points of their con-
tours (Fig 1, c). The same mechanism works for partially intersecting meshes or
when transfer between different CPU domains is needed. In the later case, the
MPI transfer is taking place along with data interpolation.

3.3 Separation of Duties: Basic and Specialized Updates

The equation (7) with constant material properties (4) is the basic field update
relation in EMTL. Any mesh (the object of class emMeshBlock) must be capable
of performing this type of update on a specified range of mesh contours. This
repeatedly executed basic bulk update takes usually the major part of CPU time
during the simulation. Although a generic EMTL update step implementation
based on (7) and (8) may be utilized, the usage of specialized algorithms taking
memory layout for a particular mesh into account can greatly improve the code
performance. Because of its relatively simple localized pattern, the basic update
may be decomposed into the processing of independent memory streams. The
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minimal number of streams (four for input and one for output in homogenous
medium case) is achieved in the Yee mesh layout. The advance of the streams
(read or write) with unit memory increment is interchanged with stream rebind-
ing when contour iterator reaches mesh boundaries (see Section 5.1).

Possible modifications to (3), resulting in applying different update equations
to some contours are introduced in the form of corrections to (7) or Fixes in
terms of EMTL. The modified equations are usually needed to include various
features in the FDTD model, such as source field generation, absorbing boundary
conditions, dispersive materials, etc. Note that unlike the traditional approach
of including the specialized updates into the main update loop and testing the
equation type flags on each iteration, these updates are performed as separate
Fix loops in EMTL. The identifiers of the contours requiring special processing
are recorded in the packed fix lists. There are fixes that are performed before
(changing the input fields) and after (correcting the output fields) the basic field
update of all contours. For example, the data transfer between different meshes
in the area of mesh intersection is implemented as a pre-step fix. The trans-
fers between different CPU domains in case of MPI parallel execution require
both pre-step fix (initializing the boundary sends) and post-step fix (complet-
ing receives and updating the boundary-dependent contours). Unlike the basic
update, the fixes contain model-specific algorithms and are implemented in a
general mesh-independent way. However, when the number of contours affected
by a certain fix is large, the mesh-specialized implementation may be useful to
gain performance. EMTL provides a means for the code developer designing a
mesh to define such specialized updates.

As for all explicit time integration schemes, the maximal time step dt for field
update in FDTD is connected with the space resolution dx and propagation
speed c by the Courant condition: dt ≈ dx/c. Thus, when meshes with different
space resolutions coexist in the model, it is necessary to propagate them with
different time steps. In EMTL, the meshes are advanced in the order of their time
steps, the mesh with the largest possible time step is updated first determining
the next target time. All other meshes are advanced in order till they reach the
target time. Special ”synchronization fix” is used for transfers between meshes
with different time layers. For that transfers, the field data from the previous
time level is also required to interpolate the input fields both in time and space.
This pre-step fix stores the required for interpolation to other meshes field values
of current time level, before they are overwritten by the next field update.

3.4 Optimizing Memory Usage

The fix loops iterate over a subset of the contour set provided by the mesh. The
sequence of ”fixed” contours depends mainly on large-scale geometric setup of
the model and is in most shows regular patterns. Moreover, the data utilized
by contour fixes often contains the same corrections for different contours. To
account for this regularity, a simple data packing techniques are used in EMTL.
The packing is based on the detection of linear trend subsequences (identical
increment) in the sequences of integers. The subsequences are then encoded by
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replacing them with an indicator code (-1) followed by the (increment, number)
pair. Although very primitive, this compression permits to save much memory
for bulk corrections and does not induce significant overheads when unpacking.
Both the iterator sequences and data index sequences (pointers to identical data
values) can be effectively packed using this strategy. For complex correctors such
as UPML fix, utilizing large amount of data, the fix update sequence reordering
can be utilized to improve cache efficiency when accessing the packed data. In
this case, the order of contour iterations may be adjusted corresponding to the
order of unique data values stored in memory.

3.5 Parallelization Strategy

EMTL supports parallelization using space domain decomposition which is a
common technique for time domain solvers. The CPU domains may be arbitrary
SpaceRegions, subdividing the main simulation region. The EMTL contour
analysis algorithm detects contours crossing domain boundaries and registers
”transfer fixes” for the contour input points belonging to non-local meshes or
CPU domains. The data interpolation coefficients required to represent data
from a source different from the mesh the contour originates from (different do-
main or different mesh) are recorded in transfer fix. They are convolved with
the data taken from the remote source on each field update iteration. The only
difference for parallel execution is that the recorded data transfer requires MPI
message rather than direct memory copy.

The automated balanced decomposition based on bisection algorithm is im-
plemented in EMTL and may be utilized to decompose the main region into
box-shaped domains according to the number of processors detected at program
start. To split the region into balanced domains, the algorithm uses a number
of recursive region bisections by planes in axial directions. The bisections are
performed in such a way that two resulting subregions are balanced in terms of
ni

∫
Vi

w(x)dV , where ni is the number of processors assigned to subregion i, w
and Vi are ”workload density” and the subregion volume correspondingly. The
workload density represents the cost of computations for a given space location.
It can be approximated by roughly sampling the fraction of different materi-
als/equations along the bisection axis. The same contour path algorithm, deter-
mining the crossing fraction of a contour with a body is used for this purpose. The
correctors are assigned experimentally determined workload weights (the basic
bulk update has the weight of 1.). For example, for UPML absorbing boundary
condition fix (see Section 4.3) the measured weight is approximately 2.5. The
bisection algorithm is then applied to the subdivisions and stops recursion when
the number of assigned processors for a subregion reaches one.

Techniques trying to optimize cache efficiency of the basic bulk update by
reducing the number of memory stream rebindings are possible within EMTL
decomposition algorithm. For example, the authors of [11] argued that the ”pen-
cil” memory layout can save up to 60 per cent of computational time on Beowulf
type architectures. In this technique the space dimension corresponding to the
most rapidly changing data array index is kept as extensive as possible, while



Creating Numerically Efficient FDTD Simulations 221

domain decomposition is performed in the remaining dimensions. The EMTL
bisection algorithm permits to specify the number of bisections (including zero)
along selected axis explicitly, and the effects of pencils may be studied directly
(see Section 5.1).

4 Implementing Basic FDTD Algorithms as Correctors

In this section we briefly describe the FDTD techniques available in EMTL in
the form of ”fixes”, or corrections to the basic bulk update equations (7).

Wave Generation by the Total Field/Scattered Field Method. The
TF/SF technique [3] is a very effective source field generation method when
the simulation domain may be split into the Total Field (TF) and Scattered
Field (SF) regions. It is assumed, that the incident wave propagation is known
analytically for the case there are no scattering objects. The update equations
in the SF zone are solved for the scattered field which is a difference between
the total field and the known unscattered incident field. The TF zone contains
scattering objects and the update equations for the total field are solved there.
The update equations have exactly the same form (7) in both zones, except for
the places where the update contour passes the TF/SF boundary. The output
point and the input points of such a contour may be classified to be TF or SF
points according to their positions. If the update involves input points of the
type different from the output, then a corresponding correction (incident field
at the contour edge) is added or subtracted:

F c(t +
1
2
Δt) = F bulk ± β(

∑
diff. zone

F l
inc(t)li), (10)

where F bulk is the basic update at the right hand of (7), ”+” sign is used when
the output point belongs to the TF zone and ”−” otherwise. The TF/SF fix
records the update coefficients ±βli for each combination of input/output mem-
ory indices composing the interpolations of F . These indices are also classified
to be of TF or SF type.

Absorbing Boundary Conditions. This technique prevents reflection of the
wave from the container boundaries thus simulating a finite object (container)
in an infinite surrounding medium. We implemented the Uniaxial Perfectly
Matched Layer [3] (UPML) technique as a fix within EMTL. To guarantee ab-
sorbtion of a signal on some interface at any incidence angle, the ”matched”
frequency-dependent dielectric/magentic tensors are introduced in absorbtion
zone instead of ε and μ in (4):

D = ε s(ω)E, B = μ s(ω)H, (11)

where s(ω) is a diagonal tensor. The frequency dependence of its diagonal ele-
ments is a rational function of the form (a1 + jb1ω)/(a2 + jb2ω), which leads to
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the differential equation of the first order linking the components of the contour-
centered fields Dc and Ec in the time domain, for example:

k1
∂

∂t
Dc

x + k2
∂

∂t
Ec

x + k3D
c
x + k4E

c
x = 0. (12)

This equation supplements the basic update (7), which in this case is formally
performed for D. The equations for Bc, Hc pair have the similar form. The
function of the EMTL fix for the contours entering UPML region is to reserve
a space in memory for extra independent variables (D, B) and coefficients ki,
and to solve (12) at each update iteration using explicit time stepping.

Dispersive Materials. The addition of the auxiliary update equations to the
contour basic update is also used when frequency-dependent dispersion is intro-
duced in the dielectric function. This representation is usually originating from
the fits of the dielectric function of real materials in frequency domain, approx-
imating it with multiple terms of the Debye, Drude or Lorentz form [12]. These
terms may be generalized by the formula [3]:

ε(ω) =
∑

i

ai + jbiω

ci + jdiω + eiω2 , (13)

where ai ... ei are real coefficients. Each term of (13) is associated with a partial
polarization P i = εi(ω)E. The equations for P i are converted to the time
domain, resulting in the differential equations of the order determined by the
highest power of ω in the denominators of εi(ω). The EMTL fix managing the
variables P i and their update equations for the contours crossing dispersive
material regions is organized in the way similar to the UPML fix described in
the previous subsection.

5 Illustrative Examples and Benchmarks

In this section we present the actual simulation results and comparisons ob-
tained so far with EMTL-based applications. In the benchmark subsection we
compare EMTL with GPL-licensed MEEP code developed in MIT [6]. Although
not implementing non-Yee meshes and multiple meshes, this parallel code offers
a variety of FDTD techniques and can be used as a library tool.

5.1 Mesh Memory Layout Testing

Mesh memory update is the central procedure in the time domain equation
solvers. The mesh data itself is related to physical properties measured at certain
locations in space. This localization is often used as a basis for memory layout,
where the data entries responsible for physical properties characterizing a given
mesh cell are stored in adjacent memory locations. Usually the equations imply
update loops of multiple kinds, when only a limited number of physical properties



Creating Numerically Efficient FDTD Simulations 223

a) small task (mesh size 62 MB) b) big task (mesh size 1.3 GB)
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Fig. 2. Effects of the memory layout and simulation domain proportions (nx = ny
by varying nz) on FDTD performance in vacuum update (constant material proper-
ties). The code was compiled on PowerPC with IBM xlc 7.0 (-q64 -O5) compiler and
on Itanium with Intel icc 9.0 (-O3) compiler. The tests were performed at the Joint
Supercomputer Center of RAS [13].

are affected by the individual update loop, applied for all cells. In this case the
”cell as an object” memory organization may reduce cache efficiency because it
increases the memory pointer stride when accessing mesh data. An alternative
is the memory layout where mesh data is grouped by the physical property in
possibly long and contiguous arrays, or ”pencils” [11].

Being a template library, EMTL supports arbitrary memory layout strategies
and allowed us to study the memory layout effects for FDTD (Fig. 2). Two
orthogonal Yee meshes of size (nx × ny × nz) were used for testing: the one
where six field components per each Yee cell are stored in adjacent memory
(”objects”), and the other where each component type is stored in a separate
array (”pencils”). In both cases the most rapidly changing spatial mesh index
was the one along z-direction of the simulation domain. Choosing different nz
by keeping nx = ny and constant domain volume, we measured the update time
per Yee cell. On both considered architectures (Itanium 2 and PowerPC 970)
the ”pencil” layout resulted in much higher performance. The memory stream
length (nz/nx) parameter also affects performance, but to less extent than the
layout itself.

5.2 Parallel Benchmarks

To study the parallelization efficiency of our code, we performed a set of scaled
and unscaled tests on different platforms (Fig. 3). For the unscaled tests the task
size is kept constant and the execution time t(N) is measured while varying the
number of processors N , the parallel efficiency is calculated as t(1)/Nt(N). For
the scaled tests the mesh size is proportional to the number of processors and
the parallel efficiency is computed as t(1)/t(N).
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a) small cluster (Athlon MP 2400, Gigabit) b) large cluster (PowerPC 970, Myrinet)
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Fig. 3. Parallel benchmarks. a) — scaled test compared to MEEP [6] code on a small
cluster [14], the basic task size is 1403 cells vacuum box, scaled in one dimension propor-
tionally to the number of processors, 100 timesteps; b) — tests on a large cluster [13] in
its regular multi-user production regime, basic task size is 300×1002, limiting minimal
efficiency curve 1/N is drawn for comparison. The efficiency of memory update (not
taking network transfer times into account) is shown by filled squares.

The execution time trends for a small cluster, entirely dedicated to the task, may
be branched according to the two regimes of cluster network load (Fig. 3, a), the in-
terconnecting Gigabit switch presumably being the critical device limiting perfor-
mance.Thedifference in performance betweenMEEPandEMTLgrowth in inverse
proportion to the bandwidth of the switch, thus it can be mainly attributed to the
parallelization. The parallel efficiency tests of the typical 1000-timesteps task on
the large production system (Fig. 3, b) also show strong sensitivity of the code per-
formance to the network state of the whole system. Large variation of the results,
while unscaled efficiency is surprisingly higher on average than the scaled one, con-
tributes to this conclusion. For the particular cluster studied, using medium num-
ber of processors (10–40) rather than small number (2–10) in parallel execution is
still profitable (relative efficiency factor is about 0.7).

5.3 Testing Subcell Averaging Methods

The contour architecture of EMTL simplifies implementation of various subpixel
averagingmethods, used to improveFDTDaccuracywhenmodeling discontinuous
materials or small objects (Figs. 4, 5). We performed a series of tests using a) con-
tour/volume averaging of material properties for metals; b) contour/volume aver-
aging of ε or ε−1 for dielectrics; c) mixed tensor averaging [9]. In the latter case the
ε for the contour is replaced by the dielectric tensor of the form ε−1 = P < ε−1 >
+(1− P ) < ε >−1, where P ij = ninj is the projection matrix onto the normal to
material interface.We tested currently themixed averaging using only the diagonal
part of P (referred to as dTensor in the Fig 4). A gaussianpulse with characteristic
width of 20 Yee space steps, impinging a single metallic or dielectric sphere with
radius of 0.5–7 space steps, was used for testing. Scattering cross section from the
sphere obtained for different subcell averagingmethodswas comparedwith theMie
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Fig. 4. Scattering from a small dielectric sphere (ε = 12) at λ = 20 using various subcell
dielectric function smoothing methods compared to the Mie theory. The averaging
is performed over ”contour surface”, except for dTensor case, where control volume
average is used. The unit length is the Yee space step.
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Fig. 5. Scattering from a small metallic sphere compared to the Mie theory, the metal is
modeled by two Lorentz [3] terms δε1 = δε2 = 0.5, δ1 = δ2 = 2π×0.001, ω01 = 2π×0.04,
ω02 = 2π × 0.06. a) — relative error of the scattering cross section at ω02 as a function
of the sphere size; b)— relative error of S11 scattering matrix element of R = 5 sphere
at ω02 as a function of the scattering angle. The unit length is the Yee space step.

theory. For the metallic sphere, the scattering matrix element S11 [15] at resonant
frequency was also studied as a function of observation angle (Fig. 5, b). To obtain
fields at large distances and different scattering angles, Near-to-Far field transfor-
mation [16] was used in transforming the fields measured at 2.5 radius distances
from the sphere to the far fields.

The results of the tests show, that averaging is important for small objects.
The direct < ε > and harmonic < ε−1 >−1 averages lead to comparable but
opposite in sign error, the proper mix of both [9], even using diagonal tensor
only, leads to much smaller errors. The averaging over a ”control volume” of
a contour rather than over a contour ”encircled surface” may be important for
properly distinguishing very small objects but does not lead to any apparent
improvement in the accuracy.
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6 Conclusions

In the present work we demonstrated that a large set of FDTD techniques may be
formulated using the same primitives. The basic concept for this representation is
a discretized field contour entering the integral form of Maxwell’s equations. The
main aim of this paper was to describe contour-based mesh architecture utilized
in EMTL and demonstrate its universality and performance. Some benchmarks
and test obtained so far with EMTL are presented, the others are subject to the
future work.

The library itself is a research tool oriented on the model code developers who
need to use FDTD as part of their simulations. Being a library, rather than a
standalone application, EMTL provides a set of template classes to implement
a variety of modern FDTD techniques in the efficient parallel C++ code.
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