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Optical properties of periodic structures can be calculated using the transfer-matrix approach, which establishes
a relation between amplitudes of the wave incident on a structure with transmitted or reflected waves. The
transfer matrix can be used to obtain transmittance and reflectance spectra of finite periodic structures as well as
eigenmodes of infinite structures. Traditionally, calculation of the transfer matrix is performed in the frequency
domain and involves linear algebra. In this work, we present a technique for calculation of the transfer matrix
using the finite-difference time-domain (FDTD) method and show the way of its implementation in FDTD code.
To illustrate the performance of our technique we calculate the transmittance spectra for opal photonic crystal
slabs consisting of multiple layers of spherical scatterers. Our technique can be used for photonic band structure
calculations. It can also be combined with existing FDTD methods for the analysis of periodic structures at an

oblique incidence, as well as for modeling point sources in a periodic environment.
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I. INTRODUCTION

Photonic crystals (PCs) are artificial structures character-
ized by periodical variation of the refractive index in space on
the length scale comparable to the wavelength of light [1-3].
Owing to the periodicity, the optical properties of PCs are
different from the properties of their constituent elements. A
wide range of both theoretical and numerical methods has been
developed over the years for studying the properties of PCs [4].

Among the methods, the transfer-matrix (T-matrix) tech-
nique is widely used for calculation of transmission and
reflection coefficients for finite multilayered PC slabs, as well
as band structure calculation for the infinite PCs. The term
transfer matrix was first introduced by Pendry and MacKinnon
[S]inrelation to PCs. The idea consists in splitting the structure
into elementary slices along a specific direction and analyzing
the properties of each slice separately. Essentially, the T matrix
relates the fields at one side of the slice to the fields at the other.
The T matrix for the whole structure is then given by a simple
ordered product of the T matrices for each separate slice, and
the optical properties of the structure can be obtained from it.

The T matrix for a single slice can be obtained with
the so-called real space transfer-matrix technique, in which
the space is divided into a set of small rectangular cells
with coupling between neighboring cells [5-8]. In principle,
arbitrary structures can be modeled with this method, while
the highest efficiency is achieved with periodic structures.

While the T-matrix method can be used to calculate optical
properties of structures containing several layers, it proved
to be numerically unstable for the thick structures, which
should be decomposed into a large number of layers [9].
The instability is caused by multiplication of exponentially
growing and decaying terms involved in the T matrix for each
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separate slice. The problem is solved by using the scattering
T matrix in the reciprocal space in the plane of a slice. Such a
T matrix can be calculated using the plane-wave transfer-
matrix method [10,11]. This method assumes perfectly pe-
riodic structure in a slice, which acts as a diffraction grating
for the incident light, scattering (reflecting and transmitting)
it into a set of directions (diffraction orders). The T matrix
relates incident and scattered waves on the left of the slice
to the scattered waves on the right of the slice and contains
only decaying terms, which guarantees the stability of the
method [10-12]. In the scattering T-matrix framework, the
slices cannot be simply combined by matrix multiplication,
and the calculation of the T matrix for the entire structure can
be done via a number of recursive algorithms [9].

In the plane-wave transfer-matrix method, the fields are
expanded into the plane-wave series, and T-matrix calculation
involves the Fourier transform of both dielectric permittivity
of the structure e(r) and its inverse €~ !(r). This approach
becomes inefficient for complex geometries. On-shell layer
multiple scattering (LMS) methods [13-15] make use of
the symmetry properties of individual objects, constituting
the PC layer. At the first step, the T matrix of the object
is calculated and then it is used for the calculation of the
T matrix of the PC layer. LMS methods are useful when the
PC is made of highly symmetrical particles [e.g., spherical
in three dimensions (3D) or cylindrical in 2D] [13]. The
stacking disorder is naturally incorporated in this approach
by application of the proper phase shifts when combining the
matrices of adjacent slices [16]. The method can be enhanced
to treat spheroids and disk-shaped scatterers [17] but treatment
of a generic nonsymmetrical case is complicated.

The finite-difference time-domain method (FDTD) [18]
is one of the most powerful methods in computational
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FIG. 1. (Color online) Single-layered (top) or multilayered (bot-
tom) periodic structure (single layer is a periodic array of spheres).
Light propagation through these structures can be calculated using
the transfer-matrix approach. The transfer matrix of a multilayered
structure can be obtained as a product of the transfer matrices of
constituent layers.

electrodynamics. In the FDTD framework, the temporal
Maxwell’s equations are solved on the space-time grid, which
makes this method particularly suitable for modeling the
structures with an arbitrary geometrical features. The FDTD
can be used for calculation of transmittance, reflectance and
absorption of finite PC slabs [19], light extraction from
OLEDs [20], as well as for spontaneous emission modification
modeling [21].

In our previous letter [22] we introduced a new method
for calculation of the T matrix for multilayered periodic
structures. This method inherits all advantages of the FDTD: it
is suitable for simulation of complex geometries and dispersive
or nonisotropic media. In our method we perform a series
of numerical experiments for a single layer with incident
plane-wave impulses of different polarizations and incident
wave vectors. Transfer-matrix elements of a single layer are
obtained using Fourier transformation of field values recorded
during these numerical experiments. The transfer matrix of
a multilayered structure can be obtained as a product of
T matrices of constituent single layers (Fig. 1). Compared
with the direct FDTD simulation of the whole multilayered
structure, our approach has an obvious advantage when one
needs to vary the number of layers and their positions.

In this paper we present the detailed description of our
hybrid FDTD transfer-matrix method and discuss its possible
applications. In Sec. II, we outline the scattering T-matrix
formulation. In Sec. III, we describe the proposed hybrid
method and the way of its implementation in FDTD code.
In Sec. IV, we compare our method to both FDTD and the
on-shell LMS method for the selected test case. In Sec. V, we
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discuss further possible developments of our method. In the
final Sec. VI, we summarize our results.

II. SCATTERING T-MATRIX FORMULATION

Consider a single-layered planar periodic structure speci-
fied by ay, a, primitive vectors in the in xy plane (Fig. 1, top).
The corresponding reciprocal-lattice primitive vectors by, b,
satisfy the relation

b['ﬁj:2ﬂ8[j. (l)

For a single plane wave the wave vector q can be represented
as a sum of components parallel and normal to the layer:

q=q)+q.. 2)

One can write the component parallel to the layer as

q =k, +g (3)

where k| belongs to the first surface Brillouin zone formed by
vectors by, by and g is translation vector in reciprocal space,
g = mib; + myb,.

Let us consider some fixed value k. The wave vector of
the plane wave with some given frequency w and q) = k| + g
can be written as:

+ _ 2 241
q, =k +gxlg” — Kk +g7]u, 4)

where + and — signs correspond to wave propagating in
the positive and negative z direction respectively, u, is the
unit vector in the positive z direction, and g = ue(w/c)?. In
the case g2 < k; + g)%, (4) defines a wave decaying in the
positive or negative z direction.

Plane waves exp(iq, - r)u; with a given g, direction s = =+,
polarization j = 1,2, and vector g may be used as a basis for
the electric (magnetic) field characterized by fixed frequency
 and k:

2
Er) =) "% >[El}; exp(iq} - r)u;. )

s=£ j=1 g

We agree that j = 1 corresponds to the s-polarized wave,
whereas j = 2 corresponds to the p-polarized wave, and u’; is
a unit vector in a direction of polarization. Obviously, vector
u; is perpendicular to the incident wave vector qg. For the
special case when q; is directed along the z direction (normal
incidence), we make an agreement that j = 1,2 correspond to
x and y axes, respectively.

Let the incident field propagate in the positive z direction.
Then its expansion takes the form

2
Ej(r) = ) [Euly; expliqy - ru;, ©®
j'=1

where [Em]i,', jare expansion coefficients. Here and after we
use the strokes ’ to mark the incident wave, while the absence

of stroke can refer to transmitted or reflected waves.
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Generally, the transmitted and reflected fields may be
represented as:

Ef(r) = Z Z[Etr] expliqy - ru;, (7)
E(r) = Z D Exl,; expligg - ru;. ®)
j=1 g

The + sign for the transmitted wave in (7) means that it
propagates in the positive z direction. The — sign for the
reflected wave (8) means that it propagates in the negative z
direction. Due to the translational symmetry of the structure,
the part k; of the planar wave vector q; (which belongs to
the first Brillouin zone) remains the same for the incident (6),
transmitted (7) and reflected (8) waves.

While these expansions in principle include the infinite
series over g, in numerical applications there is always a cutoff
at some value and the sum is finite: |g| < gmax. The cutoff value
gmax should be chosen so as to guarantee the convergence of
the reflected and transmitted fields. One can choose gmax =
1e(wmax/c)* Where wpqx is a2 maximal calculated frequency.
In this case directions |g| > gmax Will correspond to evanescent
waves only.

Because of the linearity of Maxwell’s equations, passage
of the plane wave of given frequency (given ¢g) through the
periodic structure can be regarded as an action of a linear
operator in the space of indices {m,m;} and two polarizations.
Therefore the expansion coefficients [Elr]Jr for the transmitted
and [E,Jr] for reflected waves, entering the relations (7)
and (8), can be expressed through the expansion coefficients
[ m]; I for the incident wave (6). This can be done by

introducing transmission M o j» and reflection Mgl o j Matrix
elements:
[Eqly; = Z S Bl ©)
j '=1
- -+ g1t
[Exly; = Z Mgy i [Enly (10)
Jj'=1

Now assume that the incident plane wave propagates in the
negative z direction:

2
E.(1) =) [Euly; expliqy - nu). (1)
=1
The transmission and reflection matrix elements M, . ;.
Mgt o are defined in the similar way:
[Euly; = Z Mg o [Einlg (12)
[Exly; = Z My g [ Einly ;- (13)

j'=1
The action of M™% on the incident wave [Ei,]*
in (9), (10), (12), (13) can be thought of as transferring it
to the transmitted (reflected) wave on the other (the same) side
of the layer. This is graphically represented in Fig. 2.
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FIG. 2. (Color online) Scattering of the incident wave on the
single layer of periodic structure: the action of M matrices.

Let us now consider a multilayered structure (Fig. 1,
bottom). The transmission and reflection matrices for the
structure can be obtained from the matrices for each layer.
Each layer can be characterized by the left (—d;) and right
(d,) virtual borders with respect to its center z = 0 (Fig. 3).
Expressing the plane waves to the left (right) of the layer with
respect to its left (right) border (i.e., a plane wave to the left
of the layer reads EﬂE exp[tq (r + d;)], and the plane wave to
the right Ei expliqg (r — ,)]) we can rewrite the matrices M
in the followmg form:

1
ng,g’j’ = ng g exp[lqg d + lqg dl] (14)

n -
Qgigj = Mg]g expliqg -d, —iqy -d,], (15)

Q:gljl‘,g/f’ = ng ¢ eXpl—iqy - di + iq;, -4l (16)
Oy = My gy expl—igy -di —iqy-d,].  (17)

Matrices Q" and Q™ correspond to the incident wave propagat-
ing in the positive z direction: matrix Q' relates the transmitted
wave (with respect to the right border) to the incident wave
(with respect to the left border), matrix Q' relates the reflected
wave (with respect to the left border) to the incident wave (with
respect to the left border). Matrices Q™ and Q'Y correspond to
the incident wave propagating in the negative z direction and
have the similar meaning.

Once the Q matrices for two adjacent layers (n and n + 1)
are obtained, Q matrices for the pair of them can be calculated.
Let a plane wave E;- be once again incident from the left on
the pair of layers. We denote the reflected wave as E;, and
the transmitted wave as E;", while the wave propagating in the
positive (negative) direction in between the adjacent layers is

Eln 5
E E E,
d(n) ' (n) d (n+1’ (n+1):

nth layer (n+1)th layer

FIG. 3. (Color online) Scattering of the incident wave on the pair
of layers: setting up the virtual borders d, ,.
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denoted as E* (E7), see Fig. 3. Using Q matrices we obtain

ET = Q'mE; + Q"(mE", (18)

E- = 0"n + DHET, (19)
and therefore
ET =[I - 0"m)Q"(n + )] Q'n)E;, (20)

where / is unity matrix.
Then, for the transmitted and reflected waves we arrive at
the following relations

Ef = 0'n+ DI — Q"W Q"M(n + DIT'Q'WE],, @D

E; ={0"m)+ 0V m)Q"n + 1)
x[I —0"m)Q"(mn + DI Q'm)IEL. (22

Comparing the above equations to the definitions of
corresponding Q matrices, we finally obtain the Q matrices
for of a pair of adjacent layers n, n + 1:

Q'nn+1)=Q'n+1)
x[I = Q"m) Q" + 117" 0'(n), (23)

0"(m,n+1) = 0"m)+ VM) Q" (n + 1)
x[I - Q"m)Q"(n+ D' Q'(m).  (24)

Identical considerations for a plane wave incident on the
pair of layers from the right lead to similar expressions
for QV(n,n+1) and Q"(n,n + 1) correspondingly. The
described procedure of multiplying the Q matrices of a pair of
adjacent layers can be repeated until one gets the Q matrices
for the whole multilayered structure.

(O matrices can be used to obtain transmission and reflection
coefficients for the multilayered structure. Assuming that
the incident wave propagates in the positive z direction, the
transmitted and reflected waves for the whole structure can be
written similarly to (9), (10):

2
[Ecly; =Y O gilEnly (25)
i
2
- _ m 1t
[Erf]gj - Z ngﬁg/jf[Em]g'jh (26)
j'=1

Summing intensities of the transmitted (25) and reflected (26)
waves over g and j and normalizing by the incident wave
intensity, we find the transmission and reflection coefficients
for the incident wave (6):
+2,+
T _ Zg’j |[Etr]gj| qu (27)
> L]y 2qy.

_ Zg,j |[Erf]g_j|ZQg;
Z_,‘/ |[Ein]§j'|ZQg/Z

where ¢ = [¢° — (kj + 2’12 and ¢, = [¢* — (k) + &)1,
compare with (4).

O matrices can be used to calculate the band structure of
infinite PCs. An infinite PC can be represented as a block
of (generally) several layers repeating infinitely along the
z axis. The complex band structure associated with the xy

(28)
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surface of the PC can be obtained by applying the Bloch
periodic boundary conditions along z and taking into account
the relation between the fields immediately to the left and to the
right of the block via the corresponding Q matrices [11,14,15].
Varying the phase in the Bloch periodic boundary conditions
along z direction, one can obtain the band structure in the
whole reciprocal space.

III. HYBRID METHOD

In this section we describe a way of calculating the M
matrix elements (9), (10), (12), (13) using the FDTD method.
Since we consider a periodic structure, a single unit cell with
the periodic boundary conditions may be simulated. Generally,
the FDTD method allows us to specify either periodic (k; = 0)
or Bloch-periodic boundary conditions of the form:

F(z,r) = F(t,r & a)exp(Lik) - a), 29)

where F is either electric field E or magnetic field H, a is a
lattice translation vector parallel to the surface of the structure,
t and r are the coordinates in time and space.

For simplicity, in this section we consider the case of k; = 0
(extension for nonzero k| is trivial). In this case, every possible
transmission and reflection directions correspond to the wave
vectors of the form

q=g+q;, (30)

where g = mb; +m,b, and b;, b, are the elementary
translations in the reciprocal lattice. Note that any periodical
structure can be considered for the only case kj = 0 when
using the multiple elementary cells (supercell) in the xy plane.
The supercell approach is however very extensive in terms
of computational resources. An alternative is the application
of the Bloch-periodic boundary conditions defined for each
specific value of k. The calculation procedure for the matrix
elements for each k; remains the same as described below for
the periodic case but requires FDTD implementation with the
Bloch-periodic boundary conditions.

Our FDTD geometry setup is illustrated at Fig. 4, where
the structure is periodic in the x and y directions, and finite
in the z direction. Nonperiodical directions are confined by
the perfectly matched layers (PMLs) [18]. To generate the
incident wave we use the total field/scattered field (TF/SF)
technique [18].

Bloch-periodic boundary conditions

®G—s é@

rZ70T
rZ70

Bloch-periodic boundary conditions

1 1 1 :
L I— T |+Z

-d 0 d

FIG. 4. (Color online) FDTD geometry setup. 1: generating
(TF/SF) border; 2, 2': detector arrays for reflected and transmitted
waves.
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The TF/SF surface positioned before the structure interface
generates an electromagnetic pulse propagating along the z
direction. The pulse signal is partially reflected from the
structure and is absorbed into the rear PMLs layer. The rest of
the pulse propagates through the structure and is absorbed into
the fore PMLs layer. The FDTD simulation runs until the signal
has left the computational cell. The simulation time depends
on the geometry as well as optical properties of the simulated
structure. Usually, the greater the length of the structure is in
the z direction, the longer is the duration of the experiment,
as the path covered by the signal before leaving the structure
increases. Also, the duration is usually shorter for absorbing
structures as compared to purely dielectric ones.

The incident pulse is a wave packet with a temporal profile
g(¢) chosen in such a way as to cover the desired frequency
range. Using a pulse with finite duration allows to obtain results
for a wide frequency range per one simulation. For example,
temporal profile of the pulse can be defined by Gaussian
centered at some time ¢t = £,

2
r—1p
g(r) = exp [—( ; ) } , (€29)
which has the following frequency representation
242
g(w) =ty exp |: — a)4w:|. (32)

Changing f,, one can tune frequency range covered by the
pulse. Frequencies covered by the pulse should be resolved
by FDTD mesh (standard Yee mesh resolves wavelengths not
less than 10-20 mesh steps [18]). Note that the temporal profile
of the Gaussian pulse (31) has a nonzero value at t = 0. To
provide a smooth transition from zero into Gaussian pulse we
should have at least ¢ty > 3t,. We also need to terminate the
Gaussian pulse after some time #,:

g(t) =0,

which should be at least t, > ty + 31,.

To apply the TF/SF technique one needs to know the
incident field at the mesh nodes closest to the TF/SF surface.
For the normal incidence, g = 0, the incident field is given by:

E(t,r) = g(t — z/o)u;, (34)

where u; is the chosen polarization vector. One can use the
expression (34) to specify the incident field in the TF/SF
technique. However, it does not perfectly reproduce the
actual numerical incident pulse propagation in the FDTD
mesh. To deal with this problem, instead of using analytical
expression (34), one can calculate the incident field at an
auxiliary one-dimensional grid [18].

If the incident wave has a nonzero component g # 0, then
the wave vector depends on the frequency as

q(w) =g+ ue(w/c) — g’u,,

where u, is a unit vector in z direction. The expression (35)
is a special case of (4) with k; = 0. To model the finite pulse
one can choose the frequency representation of some known
pulse g(w):

t>t,, (33)

(35)

E(r,a)) — g(a))uj eiqr — g((l))uj eiZV ne(w/c)>—g? eigr. (36)
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The resulting pulse in the time domain can be obtained as
E(r.1) = Re(F, [g(w)u;e"])

= Re(F, [g(o)u eV @/ ~g Jeiery - (37)
where f*‘w denotes the inverse Fourier transform. The same
form of the incident pulse is used in the spectral FDTD method
[23]. Note that the resulting pulse (37) should be terminated
after some time (33) when it is small enough.

Expressions (34) and (37) can be applied for magnetic
field H as well. If the incident medium has a refractive index
different from unity, then (34), (37) should be be multiplied
on it while applying for magnetic field.

S- and p-polarization directions can be defined as:
u; = (q x u;)/|q x u;|, u, = q x u,. Note that the incident
pulse (37) includes evanescent components pe(w/c)’ < g2
with a complex vector q, which has its imaginary part along
the z direction. In this case, u, = q x u, is a complex vector
as well. However, the vector uy is always real, since q x u,
is also real (q does not have imaginary components in the xy
plane).

For the case g # 0, different plane waves components of
the pulse propagate along different directions. Therefore we
cannot use only one auxiliary one-dimensional grid to calcu-
late the incident wave propagation. Propagation of different
components can be calculated at separate One-dimensional
meshes, but it is easier to use directly the analytical form of the
incident pulse (37). However, as we found numerically, in this
case TF/SF surface can generate certain artificial evanescent
waves in backward direction.

To calculate the transmitted and reflected waves E(w,g) we
put planar detector arrays in front of (for transmitted wave) and
behind (for reflected wave) the structure. The detectors do not
correspond to real objects in space. We use the term detector
to denote the points where field values are recorded. Note that
these points do not necessarily coincide with the FDTD mesh
nodes. They could be positioned arbitrarily inside calculated
volume. Field values at the detectors are interpolated by mesh.
Our detectors are arranged in a two-dimensional xy grid with
spatial steps Ax, Ay.

During the numerical experiment the detectors record field
E(z,x,y) in time and space representation (z coordinate is
fixed since the detectors plane is perpendicular to z direction).
Field values E(w,g.,g,) can be obtained using Fourier
transformations in time ¢+ — w and space x,y — gy, gy. Order
of these Fourier transformations is irrelevant: one can make the
temporal Fourier transformation first, and the spatial Fourier
transformation after (and vice versa).

The Fourier transformation r — w can be done using
the Fourier-on-the-fly procedure, which assumes a separate
subsuming of the Fourier transformation for each frequency w
at each temporal iteration n:

N,

E(w) = Z E(t) exp (iwn At)At,
n=0

(38)

where At is the time step and N, is the number of temporal
iterations. However, if one needs to obtain the fields in a wide
frequency range, it is more efficient to record the time history
of a signal and perform the fast Fourier transformation [24]
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at the end of the simulation. The drawback of this approach
is necessity to keep the whole time trace of the signal in
the computer memory. If the simulation is long it leads to
allocating huge arrays in the memory for the recorded field
values. As an alternative, field values can be recorded in some
file at the each temporal iteration. This file will be analyzed at
the end of the simulation.

The spatial Fourier transformation x,y — g.,g, should be
done using the Fourier-on-the-fly method, since the number
of wave vectors of interest is usually small. In the case of
parallel FDTD implementation, each processor can calculate a
partial subsum of the Fourier transform for detectors inside the
corresponding space subdomain. At the end of the calculation
all partial subsums are collected at a chosen processor and the
total sum is calculated:

N, Ny
E(gr.8)) = Y Y E(x,y)exp(igckAx +ig,l Ay)AxAy,
k=0 (=0
(39)

where Ax, Ay are the spacings of detectors array, and N,,
N, are the dimensions of detectors array in corresponding
directions.

Let us roughly estimate the number of opera-
tions for two different ways of Fourier transforma-
tion: E(z,x,y) — E(t,8:,8,) & E(w,8.,g,) and E(¢,x,y) —
E(w,x,y) — E(w,g,,8,). We use the following notations: N,
is the number of the temporal iterations, N, = NN, is the
number of detectors, N,, is the number of calculated frequen-
cies, N, is the number of calculated components g. Calculating
sum (38) for all frequencies consumes N;N, operations.
Calculating sum (39) for all components g consumes N, N,
operations. Performing the temporal Fourier transformation
(for all components g) after the spatial Fourier transformation
(for all time iterations) consumes NoN; N, + N;N.N, oper-
ations. Performing the temporal Fourier transformation (for
all detectors) before the spatial Fourier transformation (for
all frequencies) consumes N,N,N, + N,.N;N, operations.
Since the number of detectors is usually larger then the
number of time steps N, > N, (detectors are arranged in
a two-dimensional array in the xy plane, while time is
one-dimensional), the first way is more efficient since it
requires less operations. However, if one needs to calculate
E(w,x,y), the second way should be chosen. For example, the
frequency-dependent field E(w,x,y) can be used to analyze
spatial distribution of different modes (in frequency domain)
or calculate transmitted (reflected) flux spectra:

1
W(w) = > / Re |E(w,x,y)* x H(w,x,y)| - u,dS, (40)

where the integration is performed through the area S covered
by the detector arrays for the transmitted (reflected) waves.
Note that the energy flux can also be calculated as a sum over
the propagating waves fluxes:

1
W) =7 D Re|E@.g:.8)" x H@.g:.8,)IS cosé,

q:>>0

(41)
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where 0 is the propagation angle, cos 6 = (q - u;)/|q], q is the
transmitted or reflected wave vector (35).

In our method we simulate the incident light of different
components g and polarizations j’ according to (37). For
each pair (g/,j’) we make two numerical experiments: with
the structure and without the structure (vacuum). We perform
the Fourier transformation of the recorded fields E(¢,x,y) —
E(w,g.,gy) and calculate their projection onto s- and p-
polarization directions E(w,g,j) = E(w,g) -u;, j =s,p.

Let us denote the calculated transmitted and reflected fields
for the structure and vacuum experiments as E. (w,g,j),
Ei(w,g,7), Ej;c(a),g,j), E,.(w,g,j).Since the incident wave
has a fixed component g’ and polarization j', E} (w,g,j) and
E_.(w,g,j) should be nonzero only for g’ =g and j = j'.
Field E.(w,g, j’) is close to zero for normal incidence case
g =0 (it is still nonzero due to the small spurious wave
propagating backwards from the TF/SF border). However, for
the components g’ # 0 field value E_ (w,g, ;') is not small
enough to be ignored. As was discussed earlier, the TF/SF
border generates the spurious backward wave together with
the incident field (37) with nonzero g'.

If the incident wave has a component g’ and polarization

j’, we have:

[Etr];_j = M;j:;rj/[Ein];—fj'v (42)
[Erf];j = Mgij?rg'j/[Ein]‘gﬁju (43)

which is particular case of (9), (10). These relations imply a
way how to obtain the transfer matrix elements with the help
of FDTD. One needs to simulate incident wave with the fixed
component g and polarization, then find the transmitted and
reflected fields and normalize them to the incident field:

tt — [Eg ]t EnlE
Mgy = [Eulg; /[ Einlg s (44)
Mgty i = [Exlg; /[ Einlg - (45)

This procedure can be repeated for different incident compo-
nents g’ and the two possible polarizations.

To calculate the transfer-matrix elements (44), (45) we need
to reconstruct the transmitted, reflected, and incident waves at
the position z = 0. These field values are obtained from the
fields recorded by the detectors by applying the corresponding
phase shifts (see Fig. 4):

[Efg; = ELo(g /) exp(—idtV/pe(w/c)? —g),  (46)
El(g,j)exp(—id*/ue(w/c)> —g»),  (47)

[Eqfly; = (Eq(g.)) — E(g. )
- exp(id~y/pe(w/c)? — g2), (48)

where d (d™) is the distance between transmittance (re-
flectance) detectors arrays and z = 0 position. In the last
relation (48) we take into account that the signal recorded by
reflectance detectors is partially contributed by the artificial
signal generated by the TF/SF surface and propagating back-
wards. The fields (46)—(48) should be substituted to (44), (45)
to calculate the transfer-matrix elements.

If the scatterers constituting adjacent layers are far from
each other, the transfer-matrix elements corresponding to

[Eqle; =
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the evanescent waves &(wmax/c)> > g° can be neglected,
since the evanescent waves centered at these scatterers decay
fast with increasing distance and do not reach adjacent
layers. If this is not the case, we still need to calculate the
transfer-matrix elements for the evanescent components. This
procedure requires some precautions described in the next two
paragraphs.

As we found numerically, while applying (37) as an
incident impulse, the TF/SF surface generates spurious
evanescent waves [E ln] j of the opposite component —g' or
conjugate polarization [waves with g # +g do not appear
because of the oscillating coefficient exp(ig'r) in (37)]. These
spurious waves are smaller than that one with g’,;’, but
not small enough to be ignored. This makes problematic
extracting the transfer matrix elements within one FDTD
experiment (44), (45) for frequencies ue(w/c)?> > g>. To
solve this problem, we combine four numerical experiments
with both components +g’ and polarizations j' = s,p. As a
result, we arrive to system of four linear equations for four
unknowns M, .

g/.8J
2
[Eelf; =D M5 En)f . (49)
j'=1 +g
[Extly; = ZZ g, g/ Ein] g/ (50)
=1 +g

Each linear equation contains a different combination of
[Ein]g I which correspond to the true wave and three spurious
waves generated in each experiment. This system is well
conditioned and can be easily solved using standard linear
algebra.

While modeling the evanescent waves, the TF/SF surface
and detectors should be placed close to the structure, since
these waves decay fast with the distance but should not be
missed. At the same time, the distance between PML and
structure should not be small, since the evanescent waves
are poorly absorbed by the PML. In some cases, interaction
between the PML and evanescent waves can lead to a special
kind of the FDTD divergence [25]. To solve this problem one
may increase the distance between the PML and the structure,
however it involves using larger computational mesh. A better
solution is to apply an additional absorbing layer behind the
PML [24]. This layer absorbs transverse and evanescent waves,
which are problematic for the standard PML.

We described above how to calculate the transfer-matrix
elements M g,]/, Mg]Jrg] Elements M ig i Mg o) are
calculated m the same way by simulation of the incident
wave in the negative z direction. At Fig. 4 it corresponds to
placing the TF/SF surface after the structure and interchange
between transmittance and reflectance detectors. If the struc-

ture possesses a certain symmetry, elements M, .\, Mg g

can be expressed through M H;;, o My, +, .. For example, if
structure is symmetncal under 180° rotations around the x axis,
—+

+F
8128188y J —8xs8ysJs—8&:8y J"” Other types of symmetry

can result in further reduction of number of independent
transfer matrix elements.

Note that the transfer-matrix elements express a relation
between the transmitted (reflected) and incident magnetic field
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in a similar way as for the electric one (42), (43):

[Hof = M THlE, 51)
[Hily, = Mgty [Hinl} (52)

As we checked numerically, calculation of the transfer matrix
elements using the relation between magnetic fields can
produce more accurate results in the case of p polarization.
In this case, the H field is directed along the s-polarization
vector with a zero z component, while E is directed along the
p-polarization vector with nonzero x, y, and z components.
Thus, in this case, the H field is better aligned with the FDTD
rectangular mesh.

IV. TESTS

We implemented the transfer-matrix technique as a part
of the Electromagnetic Template Library, which is available
online [26]. To test our technique we calculate the transmit-
tance from opal photonic crystal slab formed by conductive
(¢ = 1.5, 0 = 0.5) spheres of the radius R = 0.3. The spheres
are packed in a cubic lattice with period a = 1. We consider
four-layered and 32-layered photonic crystal slabs (each layer
is square lattice of spheres). We choose the mesh step Ar =
0.05. Note that simulation of opal photonic crystals requires
a special concern since their spherical elements should be
adequately discretized on the rectangular FDTD mesh. This is
done with the help of a subpixel smoothing method, which
significantly improves the FDTD accuracy for arbitrarily
shaped scatterers [27]. We use a variation of this method, which
is applicable for conductive and dispersive media that can be
specified by arbitrary number of Drude, Lorentz [18], and
modified Lorentz terms [28]. To reduce undesired numerical
reflection from the PMLs we use the additional back absorbing
layers technique [24], as discussed in the previous section.

To build the transfer matrix we perform simulations for
the three incident vectors g’: (0,0), (1,0), (1,1) and both
polarizations. Using results of simulations with the structure
and without it (vacuum), we calculate the transfer matrix
according to the procedure described in section III. Taking
into account the symmetry of the square lattice, we find the
transfer matrix elements for nine vectors g’ = mb; + m;b,,
where m; = —1,0,1, [m | + |m;| < 1, both polarizations and
directions (forward and backward) of incident wave. Applying
the multiplication procedure described in Sec. II, we obtain
18 x 18 transfer matrix for an n-layered photonic crystal
slab. Transmittance spectra can be calculated using (27). The
obtained 18 x 18 transfer matrix allows to obtain accurate
results for the frequency range 0 < f < 2.

At Fig. 5 we present the calculated transmittance for
32-layered photonic crystal. We compare it with the results
obtained using direct FDTD simulation and the on-shell layer
multiple scattering (LMS) method [14,15]. Results obtained
by these three different methods are in good agreement
with each other. The accuracy of LMS results decreases
at low frequencies due to the poor convergence of the
Chebyshev series for spherical Bessel functions. Note that
there is unphysical transmittance peak at the frequency f ~ 1
calculated by our hybrid technique. At this frequency one of
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FIG. 5. (Color online) Transmittance spectra for 32-layered pho-
tonic crystal slab formed by conducting (¢ = 1.5, 0 = 0.5) spheres
of the radius R = 0.3. Spheres are packed in cubic lattice with period
a = 1. Results are obtained using FDTD, hybrid transfer matrix
FDTD method, and on-shell layer multiple scattering (LMS) method.

the allowed nonevanescent scattered wave directions is almost
parallel to the plane of the photonic crystal slab. This wave is
poorly absorbed by PML that negatively affects accuracy of
the transfer-matrix calculation.

In order to illustrate the importance of taking into account
the matrix elements corresponding to the evanescent waves,
we recalculated the transmittance using a simplified transfer
matrix, where all elements corresponding to the evanescent
waves (kz)2 < 0 were set to zero (which is not correct). The
calculation was performed for 32- and four-layered photonic
crystals. One can see that the accuracy of the obtained results
deteriorates for frequencies f = 1,4/2 (Fig. 6). At these
frequencies the attenuation factor for some evanescent waves
approaches zero. These evanescent waves have more chance
to be rescattered into propagating waves inside the layer and
contribute to the wave propagation through the entire structure.

1r —direct FDTD
o TMFDTD
0.8¢ * TM FDTD, only propagating elements
8 °
5 0.6
= 32 layers
2 0.4f
<
—

0.2 eavape,

0.8 0.9 1 1.1 1.2 13 1.4 15
frequency, 1/a

0.8
[0}
(] x
c
g T et
= x
&
g% 4 layers
'_
0.2
0 1 1 1 1 1 1 J
0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

frequency, 1/a

FIG. 6. (Color online) Transmittance spectra for 32-layered (top)
and four-layered (bottom) photonic crystal formed by conducting
(¢ = 1.5, 0 = 0.5) spheres of the radius R = 0.3. Spheres are packed
in cubic lattice with period a = 1. Ignoring transfer-matrix elements
corresponding to evanescent waves results in low accuracy for
frequencies f ~ 1,+/2.
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Therefore ignoring the transfer-matrix elements corresponding
to evanescent waves leads to a decrease in accuracy.

Our hybrid technique works faster compared to a direct
FDTD calculation for a 32-layered slab, while for a four-
layered slab direct FDTD simulation is still more efficient.
Note that the hybrid technique can be preferable for modeling
of purely dielectric (nonabsorbing) multilayered slabs. Light
entering such a structure can spend a long time there before
being finally transmitted (reflected) [24], which leads to
increased simulation times in the standard FDTD. At the same
time, the calculation of transfer matrix requires the simulation
of a single layer only and can be done relatively fast.

V. DISCUSSION

The presented method can be successfully used for calcu-
lation of photonic band structure. Typically, band structure is
calculated using the plane wave expansion (PWE) method,
which relies on expanding the eigenmodes in a series of
plane waves [3]. This leads to a finite matrix eigenproblem,
which can be solved using the standard linear algebra or
certain iterative techniques [29]. However, PWE becomes
inefficient for photonic crystals formed by sharp geometrical
features, since the number of plane waves in expansion
could be very large [30]. Frequency-dependent materials are
another obstacle for standard PWE formulation, since in this
case the eigenvalue problem is nonlinear and difficult to
solve. This problem can be simplified by using the basis
function of dielectric backbone structure [31], introduction of
auxiliary fields [32] (similar approach was recently developed
for weakly nonlinear materials [33]), or applying Dirichlet-
to-Neumann map [34,35]. Alternatively, the band structure
can also be calculated by regarding frequency w and q; as
parameters and relating the eigenvalue to a component of the
Bloch wave vector q, [36-38]. This leads to a linear eigenvalue
problem even for dispersive materials. This eigenproblem can
be defined using transfer-matrix formalism [14,15]. Thus,
calculation of band structure can be done using the transfer
matrices for the entire set of wave vectors inside the irreducible
part of the Brillouin zone. A detailed way to calculate
the transfer matrix using FDTD for q; =0 is described
in Sec. III, while calculation for nonzero q; is a trivial
extension, which requires applying Bloch-periodic boundary
conditions (29). The hybrid FDTD transfer-matrix technique is
a good alternative to common way to calculate eigenmodes in
FDTD where eigenmodes are extracted from peaks in spectral
response to some excitation pulse [39—41].

Our method can be combined with the existing FDTD
methods for simulation of periodic structures at the oblique
incidence [42-50]. For example, the transfer matrix may be
calculated as described above for an obliquely incident plane
wave, which can be simulated using an iterative technique
[42,43]. In this case, the incident angle is fixed for all
frequencies. Therefore q is different for each frequency. It
modifies the definition of the incident wave (37), but the way
to calculate the transfer matrix remains the same.

Finally, while the above method is derived for a plane
incident wave (with a given k), it can be extended for the
case of an arbitrary source wave (i.e., a point dipole source).
In this case, a proper decomposition of the source term in
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propagating and evanescent waves should be used instead
of (6). This decomposition may require the summation of
different k| (integration over the Brillouin zone), which is the
case when the typical wavelength of the incident source wave
is smaller or comparable to the period of the structure. This
approach can be very useful in modeling of light extraction
from patterned OLEDs [20,51,52]. In such setup, a dipole
source is positioned inside a multilayered OLED stack in
a close proximity to periodically patterned surfaces. In the
standard FDTD, the computational domain cannot be reduced
to a single unit cell of the structure due to the local nature of the
dipole source. Therefore a sufficiently large domain bordered
with the PML should be used in the calculation in order to avoid
truncation errors, which is very time consuming. However, the
hybrid technique described in this paper allows using only a
single unit cell and performing a set of calculations for each
term in the source decomposition, which appears to be much
more efficient than the standard approach. Subsequently the
results of all calculations are summed up to obtain the result
for the dipole in the periodic structure.

VI. CONCLUSION

In this paper, we presented a detailed description of the
hybrid method for calculation of transfer matrices of periodic
structures with the FDTD method, as well as its efficient
implementation. The transfer matrix for a single-layered
periodic structure can be extracted from series of FDTD
simulations. The transfer matrix of a multilayered structure
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is obtained as a recursive product of transfer matrices of the
constituent single layers. Our approach combines advantages
of both FDTD and transfer-matrix methods. First, it borrows
the capability of FDTD to handle scatterers with an arbitrary
geometry, which cannot be easily done in transfer-matrix
methods. Second, it keeps the key feature of transfer-matrix
methods, where one only needs to calculate the transfer
matrix of the single layer once, while it can be used later
for calculation of transfer matrices of multilayered structures
composed by arbitrary sequence of single layers. This makes
our method faster than the standard FDTD for calculation of
optical properties of multilayered structures (thick photonic
slabs).

We applied the method to the calculation of reflectance
and transmittance spectra of multilayered photonic crystals
and particularly discussed the role of evanescent waves in the
wave propagation through the periodic structure. The issue of
properly incorporating the evanescent waves into the FDTD
calculation is also addressed.

Finally, we discuss the application of our method for
calculation of photonic band structures, simulation of oblique
incidence, and point sources inside a periodical environment.
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