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media in the finite-difference
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Staircasing of media properties is one of the intrinsic problems of the finite-difference time-domain method,
which reduces its accuracy. There are different approaches for solving this problem, and the most successful
of them are based on correct approximation of inverse permittivity tensor �̂−1 at the material interface. We
report an application of this tensor method for conductive and dispersive media. For validation, comparisons
with analytical solutions and various other subpixel smoothing methods are performed for the Mie scatter-
ing from a small sphere. © 2007 Optical Society of America

OCIS codes: 000.4430.
The finite-difference time-domain (FDTD) method [1]
is an extensively used computational tool in electro-
dynamics. There are several reasons for its popular-
ity: explicit time stepping does not involve slow ma-
trix operations, the method provides a solution in the
natural form of time-dependent fields, and it is suit-
able for nonlinear media and complex geometry
simulation. However, as for any other finite-
difference method, there exists an intrinsic problem
of discretization of media properties on the FDTD
space grid. In the vicinity of discontinuity of material
properties the Maxwell equations should be solved,
taking interface boundary conditions for electric and
magnetic fields into account. Any curved media inter-
face that cannot be aligned with the FDTD grid is
distorted by staircasing, which reduces the accuracy
of calculation. Thus a particular local interface orien-
tation becomes important.

Various models were proposed for solving this prob-
lem within FDTD. There is a class of methods that
are based on the modification of the discretization
mesh to better match the interface. For example,
finer grids [2] may be introduced in the regions with
complex geometry. Another possible way of reducing
the staircase effect is irregular nonorthogonal mesh
generation according to the geometry of the objects
[3]. Modification of the update scheme for selected
mesh cells near the interface can also be introduced
(contour path algorithm) [4]. Methods of this type ei-
ther imply modification of the field update algorithms
or introduce irregular meshes, which may signifi-
cantly slow down performance.

Another class of methods is based on adjusting ef-
fective permittivity � in the vicinity of an interface.
Consider a volume �x��y��z surrounding a chosen
grid point and assume that it is crossed by an inter-
face of two media with permittivities �1 and �2. The
interface boundary conditions for discretized E� and D�
fields may be modeled by an inverse dielectric per-

mittivity tensor of the following form [5–8]:

0146-9592/07/233429-3/$15.00 ©
�̂−1 = P��−1� + �1 − P����−1, �1�

where P is the projection matrix Pij=ninj onto the
normal n� to the interface between two media and � �
is the averaging over the volume. This expression
was derived in [5] for the 2D case and then used with
the omitted nondiagonal part of P. The effective per-
mittivity methods may be regarded as based on dif-
ferent approximations to (1). While the most
straightforward way of smoothing permittivity is tak-
ing contour-average or volume-average ��� as an ef-
fective value for the field update cell [9], more sophis-
ticated methods, such as the Kaneda formula [10] or
the VP-EP formula [5], take the local direction n� of
the interface into account. Partial implementation of
the expression (1) results in numerical error scaled
linearly with resolution. Full tensor P implementa-
tion was performed in [6–8]. It was demonstrated
that the full tensor method has quadratic accuracy
with respect to space resolution [8]. So far the effec-
tive permittivity method has concerned only pure di-
electrics. We develop a scheme [6–8] for conductive
and dispersive media.

Consider an interface between two arbitrary con-
ductive dispersive media with frequency-dependent
complex permittivities �1,2���. Expressing Ampere’s
law in the frequency domain using the effective per-
mittivity tensor (1), we obtain

− i�E� = P� f1

�1���
+

1 − f1

�2��� ��� � H� �

+
1 − P

f1�1��� + �1 − f1��2���
�� � H� �, �2�

where f1 is the fraction of the cell volume embedded
in the first medium. To solve Eq. (2) in the time do-
main we represent E� as a sum of auxiliary variables

according to the denominators of the terms in Eq. (2):
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E� = E� 1 + E� 2 + E� 3, �3�
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1 = f1�

j=1

3

Pkj�� � H� �j, �4�

− i��2���Ek
2 = �1 − f1��

j=1

3

Pkj�� � H� �j, �5�

− i��f1�1�w� + �1 − f1��2�w�	Ek
3

= �� � H� �k − �
j=1

3

Pkj�� � H� �j. �6�

The equations for E� m can be solved in the time do-
main in the usual way. For example, if permittivities
�1���, �2��� consist of arbitrary number of Debye,
Drude, and Lorentz terms, one can use the auxiliary
differential equation method [11]. We implemented
the solution of Eqs. (3)–(6) as part of the generic
contour-based EMTL simulation library [12]. Evalu-
ation of the interface normal vector and medium frac-
tion f1 is performed on the setup phase by analyzing
media inside a 3D body drawn around an update con-
tour center. This averaging body is usually a box
equal in volume to the Yee cell. The auxiliary vectors
E� m are always normal to the update contour plane,
thus only one scalar projection of E� m is needed for
each contour. The diagonal terms of Pkj���H� �j, j=k
are evaluated within the standard fast bulk contour
update procedure, while the nondiagonal terms j�k
are obtained from linear space interpolation of H� , ge-
nerically provided by EMTL. The addition of nondi-
agonal terms, time stepping, and summation of E� m

are performed at the end of the bulk time step, com-
posing a special smoothing “fix” within EMTL.

To verify the accuracy of our method we compare it
with Mie scattering theory [13]. The explicit time
stepping is performed using a uniform Yee mesh. We
use the total field/scattered field method [1] with Be-
renger impulse �t− t0�exp�−�t− t0�2 / tdecay

2 � for genera-
tion of a test plane wave impinging a spherical body
of small size of the order of the mesh space step. The
sphere is centered within one of the Yee mesh cells.

The calculated space (Fig. 1) is surrounded by ab-
sorbing walls implemented as uniaxial perfectly
matched layers [1]. The fields near the sphere are
measured by near detectors, forming a closed surface.
Near-to-far-field transformation [1] is used to obtain
the fields at virtual far detectors at a distance of
about 1000 simulation box widths from the sphere.
Fig. 1. Schematic view of the simulation geometry.
The fields at the far detectors are used for comparing
scattering properties with the Mie theory.

The following effective permittivity methods were
compared in our Mie scattering tests: (a) staircase
with permittivity properties taken at the field update
contour center, (b) averaging of the dispersive per-
mittivity terms over either the update contour sur-
face or the Yee cell volume, (c) harmonic averaging
corresponding to setting P=1 in Eq. (2), (d) the
VP-EP method [5] modified for conductive and dis-
persive media and corresponding to the diagonal part
of Eq. (1), and (e) the full tensor method. For most
numerical tests the efficiency factor for scattering,
being the scattering cross section normalized by the
effective object size Qsca=S / �4�r2�, is used as an out-
put.

In the first test series we consider scattering from a
conductive sphere for various sphere radii (Fig. 2).
The jumps in the measured scattering cross section
for staircase and contour averaging methods result
from a discontinuous change in field update coeffi-
cients as new Yee contours cross the sphere while in-
creasing the radius. For volume averaging the curves
are much smoother. One can conclude that averaging
over control volume rather than over a surface is im-
portant for distinguishing very small objects but does
not improve accuracy for other scales. Note that the
direct and harmonic average curves lie at the oppo-
site sides of the theoretical curve. The tensor meth-
ods implement the proper mix of both kinds of aver-
aging (the results for tensor methods are
indistinguishable from the theoretical curve in Fig.
2). A comparison of the accuracy for different meth-
ods is given in Fig. 3 as a function of mesh resolution.

In the second test series we consider scattering
from a lead sphere for �=1.5 �m simulated by a mesh
with space step 	r=50 nm (Figs. 4 and 5). We use
Drude approximation ����=�
− ��pl

2 / ��2+ i���	 for
dispersive permittivity of lead with particular pa-
rameter values taken from [14]. All methods, espe-
cially based on simple averaging, demonstrate lower
accuracy than in the previous conductive sphere case.
For the wavelength considered the permittivity of
lead is �
−81+18i, thus the real part of � is nega-
tive. Since the solution of the Maxwell equations is
essentially different in regions of positive and nega-

Fig. 2. (Color online) Efficiency factor for scattering Qsca
versus radius for a conductive sphere with �=4�0 and �
=2 at �=25. The length is measured in the mesh space

steps.



versus radius for lead sphere, �=1.5 �m.

=1.5 �m.
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tive �, the methods that do not take the interface di-
rection into account, including the diagonal tensor
method, fail to improve accuracy compared with the
staircase model. For angular dependence of the scat-
tering matrix element S11 [13] the full tensor method
has the best accuracy in the whole scattering angle
range (Fig. 5).

In the present work we demonstrated the success-
ful implementation of a tensor subpixel smoothing
method for conductive and dispersive media. It was
shown that keeping off-diagonal elements of the ef-
fective inverse permittivity tensor is crucial for cor-
rect representation of the scattering properties of
small objects.

This work is partially supported by research pro-
gram 15 of the Russian Academy of Science.
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