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We propose two complementary approaches for solution of the coupled Maxwell-Liouville equations within
the finite-difference time domain (FDTD) framework. The two methods are specifically designed to eliminate
self-interaction, which often appears spuriously in simulation of the coupled Maxwell-Liouville equations, and
hence can be used for modeling of single as well as ensembles of quantum emitters (such as molecules or quantum
dots) in an arbitrary dielectric environment. One approach borrows from the familiar total field–scattered field
technique that has been applied in the past in a different context. The second recognizes an opportunity to average
over the electric field at a set of specifically chosen points around the quantum emitter. The methods introduced
are applied to two problems of growing current interest that also present useful test cases. One is the modeling of
spontaneous emission, where comparison with an analytical solution illustrates the accuracy and efficiency of the
methodology. The second is quantum-emitter-induced transparency in a resonator formed by two gold ellipsoids,
where Fano interferences suggest interesting potential applications.
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I. INTRODUCTION

The optical properties of hybrid systems that combine
quantum emitters (such as quantum dots or dye molecules)
and metal nanoparticles are of much current interest. Metal
nanoparticles exhibit strong excitations in the form of localized
surface plasmons characterized by large field enhancement
near the nanoparticle [1–3]. In addition, the local density of
photonic states can be greatly altered in the presence of the
nanoparticle. As a result, placing a nanoemitter in proximity
to a metal nanoparticle significantly changes its spontaneous
emission rate [4–6]. The electromagnetic interaction of plas-
mons and quantum emitters can lead to new physical effects,
which are particularly evident for semiconductor quantum
dots (QDs), since they have large dipole moments and good
photostability [7]. Tuning the exciton frequency of the QD to
the frequency of a plasmon resonance can strongly modify
the optical response of the whole system. Interference of the
applied electric field and the field generated by the QD leads to
asymmetric Fano shapes in the metal nanoparticle absorption
spectrum [8,9] and to quantum-dot-induced transparency
[10–14]. It was predicted that application of a moderately
intense incident field (in the 1 kW/cm−2 range) can result in
Rabi flopping [15,16], modify the absorption line shape, and
lead to optical bistability, due to strong self-interaction of the
QD (that is, feedback through the nanoparticle) [17].

A self-consistent approach to model all these effects
requires simulation of a coupled system of the Maxwell and
Liouville equations. In such framework the quantum state of
the emitter is described by a density matrix ρ̂ whose evolution
is given by the Liouville equation,

i�
∂ρ̂

∂t
= [Ĥ ,ρ̂] − i��̂ρ̂, (1)

Ĥ being the Hamiltonian, and �̂ a superoperator describing
decay of excited states and dephasing. The Hamiltonian
includes a time-independent free component Ĥ0 and an
interaction with an electromagnetic field E(t),

Ĥ (t) = Ĥ0 − p̂ · E(t), (2)

where p̂ is the dipole moment operator of the quantum system.

The evolution of the electromagnetic fields, E and H, is
governed by Maxwell’s equations,

μ
∂H
∂t

= −∇ × E, (3)

ε
∂E
∂t

= ∇ × H − ∂P
∂t

, (4)

where μ is magnetic permeability, ε is dielectric permittivity,
and P is the macroscopic polarization. For continuously
distributed emitters (ensemble of atoms or molecules), P
reads as

P = na〈p〉, (5)

where na is the atomic (molecular) density, and 〈p〉 = Tr(ρ̂p̂) is
the expectation value of a dipole moment. For a single emitter
(one molecule or quantum dot) the polarization is given by
[18,19]

P = 〈p〉δ(r − r0). (6)

The system of Maxwell (3), (4) and Liouville (1) equations
should be solved self-consistently, since the electric field
E determined through Maxwell’s equations influences the
Liouville equation as an argument, see (2), while the dipole
moment 〈p〉 = Tr (ρ̂p̂) enters Amper’s law (4) through the
polarization P.

At large (compared to the size of the nanoparticle) distances
between the quantum emitter and the nanoparticle, solution of
Maxwell’s equations can be simplified using the nonretarded
dipole approximation [8,9,15–17]. In this approximation, the
nanoparticle is considered as a static dipole induced by the
incident field and the field generated by the quantum emitter.
The field produced by the nanoparticle, along with the incident
field, enters the Liouville equation for the nanoemitter (1), (2),
which can be solved using the rotating-wave approximation.
At small distances between the nanoparticle and quantum
emitter, the dipole approximation is not applicable, and electric
multipole effects should be taken into account [20]. However,
the electric multipole expansion has a simple form only for
spherical-type particles, and is applicable only for particles
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with lengths much smaller than the incident wavelength. Thus,
a complete model for the considered system requires a full
electromagnetic calculation, including retardation.

Recently, it was proposed to apply the boundary element
method to describe the interaction of a QD with a metal
nanoparticle [21]. Alternatively, one can use the finite-
difference time domain (FDTD) method [22]. In the FDTD
framework, the temporal Maxwell’s equations are solved on a
space-time grid, which makes this method particularly suitable
for modeling of time-dependent processes and applicable to
structures of arbitrary geometry. The first FDTD simulations of
the Maxwell-Liouville equations were initiated by Ziolkowski
for two-level atoms in one dimension [23]. Subsequently,
this approach was extended to higher dimensions and used
in different applications [24–28]. The approach proposed by
Ziolkowski is based on an iterative predictor-corrector scheme,
which makes it time consuming. In addition, it is not straight-
forward to generalize this approach to treat multilevel systems.
A more efficient technique is based on decoupling of the
Liouville equation from the Maxwell equations, which results
in improved numerical efficiency [29–34]. Alternatively, one
can solve the rate equations for the population density [35–40].

The proposed FDTD schemes were designed for continu-
ously distributed atoms (molecules) (5), and certain correc-
tions should be made to model a single quantum emitter (one
molecule or quantum dot). In this case, the polarization is
given by (6), and the quantum emitter should be simulated
as a point current source. The electric field produced by a
point source in the FDTD scheme is nonzero at the position of
the source. Therefore the electric field in the Hamiltonian (2)
contains a field produced by the emitter itself (we will discuss
the consequences of this effect at the end of the next section).
To avoid such a self-interaction, it was proposed to split the
total electric field into two parts: the primary radiation of a
quantum emitter and the field resulting from everything else.
Both fields are simulated using FDTD, while the Hamiltonian
(2) includes only the second part [18,19,41]. This approach
was applied to model plasmon transfer across a pair of gold
nanoparticles separated by a single molecule. The drawback of
this approach is the necessity to store and update arrays for both
electric fields. It becomes inefficient when considering more
than a single quantum emitter, since the number of components
of the electric field increases, as well as the required memory
and number of computer operations.

In this paper we propose two approaches to solve the
coupled Maxwell-Liouville equations for a single quantum
emitter (or any discrete number thereof). The first approach is
based on a field-partitioning concept akin to the familiar total
field–scattered field technique [22] but applied in a different
manner with the result of excluding the primary radiation of
the emitter from its position. In the second approach, the
field applied to the quantum system via Eq. (2) is averaged
over a specifically chosen, symmetry-adapted set of points.
This averaged field is shown to exclude all self-interactions.
The two approaches are complementary in application, in the
sense that the second is easier to implement but less accurate
compared to the first one. We apply the two methodologies to
two problems of growing fundamental and practical interest
that also present suitable test cases, namely the calculation
of spontaneous emission rates and the response of a hybrid

system consisting of a single quantum emitter placed in the
gap between a pair of gold ellipsoids.

The paper is organized as follows. In Sec. II, we give
detailed descriptions of both methodologies. In Sec. III, we
present and discuss the results of their application, and in
the final section we summarize our conclusions, pointing to
avenues for future work.

II. METHOD

A. Field-partitioning approach

Within the FDTD framework, electromagnetic sources are
commonly simulated using a current term in Ampere’s law
(4). A numerical map of a point source (6) on an FDTD grid
corresponds to nonzero current at a single FDTD grid point.
The electric field produced by such a numerical source is
nonzero at the grid point itself. This leads to a problem of
coupling between the Maxwell (3), (4) and Liouville (1), (2)
equations, since the latter should not contain the primary field
generated by source. In other words, we need to separate the
primary source field from the external field at the position of
the source.

To solve this problem, we borrow from the total field–
scattered field (TF-SF) technique [22], commonly applied in
a different context in FDTD methods. This technique is based
on a known property of Maxwell’s equations; namely, the
evolution of the electromagnetic fields in a closed sourceless
volume is determined by the fields at the boundary of
this volume. Within the TF-SF framework, one divides the
computational volume into the total field (TF) and scattered
field (SF) regions. The discretized Maxwell equations in the
SF region are solved for the scattered field Esc, which is the
difference between the total field E and the known unscattered
incident field E0,

E = E0 + Esc. (7)

The TF region contains scattering objects and is where the
discretized equations for the total field E are solved. The
discretized equations have exactly the same form in both
regions, except at grid points adjacent to the border between
the TF and SF regions. The equations corresponding to these
points contain fields from different regions and should be
modified with correction terms that include the incident field
E0. A detailed description of the TF-SF technique can be found
in [22].

The TF-SF technique is usually used in FDTD to generate
an incident plane wave. Some modification of this technique is
required to simulate periodic structures for the case of oblique
incidence. In this case, the incident field can be written as
the signal evolution recorded during a preliminary FDTD
simulation [42,43] or a packet of plane waves with fixed
in-plane wave vector [44,45]. The last modification is used
within the hybrid FDTD transfer matrix method as well [46].
The TF-SF concept can be also applied in a multigrid FDTD
approach, to transfer fields between inserted (intersected) grids
[47–49].

The present work introduces a rather different TF-SF
concept. Here the TF-SF border surrounds a virtual point
source. The SF region is the area confined by this border,
whereas the TF region is the open area outside the TF-SF
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FIG. 1. (Color online) The field-partitioning method: evolution
of the electric field component parallel to the dipole moment, which
is horizontally directed. The TF-SF boundary (shown in red) has a
form of a box, the interior of which consists of the SF region whereas
the open area outside the box is the TF region. The generated dipole
radiation (8), (9) propagates outside the TF-SF border into the TF
region. Part of this radiation is reflected back from a conductive
sphere (blue).

border (Fig. 1). The incident field is given by an analytical
expression for the dipole radiation [4] (we assume the case of
a nonmagnetic medium),

E0(r) = 1

4πε0

[
3er (er ,p) − p

n2r3

+3er (er ,ṗ) − ṗ
cnr2

+ er (er ,p̈) − p̈
c2r

]
, (8)

μ0H0(r) = n

c
er ×

[
E0(r) + p

r3

]
, (9)

where r is the distance from the dipole to the observation
point, er = r

r
is a unit vector in the direction of the observation

point, p is the value of the dipole moment at time (t − nr/c),
we use overdots to signify first or second time derivatives,
and n is the refractive index of the external medium. The TF-
SF border generates dipole radiation propagating outside into
the TF region, whereas the SF region contains only external
field from other sources, or dipole field scattered from other
objects (Fig. 1). Thus, the field simulated at the position of
the point source does not contain a spurious primary dipole
radiation E0 and can be applied to the quantum system through
the Hamiltonian (2). For solution of the Maxwell-Liouville
equations, the dipole moment is given as p = 〈p〉 = Tr (ρ̂p̂).
Our approach allows the simulation of several sources (e.g.,
quantum dots) using multiple independent TF-SF borders.

Note that the radiation produced by the point source is
significantly distorted by the FDTD rectangular mesh in the
close proximity to the source. In other words, the analytical
expression for the dipole radiation (8), (9) differs from its
numerical analog at the grid points close to the source (this
is common problem of simulations of evanescent fields in

FDTD [46]). Therefore the size of the SF region should not be
too small; otherwise use of the analytical expressions (8), (9)
for the incident field will result in spurious numerical signal
propagating in the SF region. In our simulations we use a
box-shaped SF region with the size a � 7�r , where �r is the
mesh step. In principle it is possible to use a smaller SF region
but this would require use of a numerical representation of
the dipole field instead of (8), (9). Such numerical field can
be possibly found by modification of the technique described
in [50]. We remark that our partitioning approach does not
require placement of the virtual source exactly at a grid point.
The source location can be chosen arbitrarily within the SF
region, since information about this is only contained in the
values of r and er in (8), (9).

B. Symmetry-adapted averaging approach

In this subsection we introduce a complementary method
to that developed in the previous subsection to separate the
primary field E0 produced by a point source from the external
field Esc. The method is not as accurate as the one presented
above but has the merits of elegance and simplicity. Consider a
sphere centered at the position of a point source r0. If the radius
of this sphere R is small enough, the external field is almost
constant within the sphere, whereas the source radiation can
be approximated by the first term in (8), which corresponds
to the field of a static dipole (the subsequent terms are small
compared to the first one, due to the lower power of r in
denominator). It can be readily shown by direct integration
that ∫

S

[3er (er ,p) − p] dS = 0 (10)

for arbitrary p. Therefore

1

4πR2
lim
R→0

∫
S

EdS = 1

4πR2
lim
R→0

∫
S

EscdS = Esc. (11)

Note that expression (11) corresponds to the electric field
averaged at the surface of the sphere (dS is a scalar). This
is not the same as the electric flux through this surface, which
clearly vanishes according to Gauss’s law (the total charge of
the dipole inside the sphere is zero). The averaged field (11)
does not contain the primary dipole E0 radiation and can be
applied to the quantum system through the Liouville equation.

For numerical reasons, it is preferable to calculate the
average of the electric field over some symmetric set of points,
rather than take an integral (11). Consider, for instance, the set
of six points r0 ± a · ex , r0 ± a · ey , r0 ± a · ez, where ei are
unit vectors in the directions of the coordinate axes, and a is an
arbitrary number (Fig. 2, left). The near field of an arbitrarily
directed dipole, p, averaged over this set of points vanishes,
since

∑
i=x,y,z

[3ei(ei ,p) − p] = 0. (12)

This is readily seen for the case where p is parallel to one of
the coordinate axes (p = ±ei), and since an arbitrary p can
be represented as a sum of its three projections it holds quite
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FIG. 2. (Color online) The arithmetic average of the dipole near
field vanishes if taken at the centers of sides (a) or at the vertices (b)
of a cube centered at the dipole position (empty circle).

generally. Therefore, the scattered field can be estimated as

Esc(r0) ≈ 1

N

∑
i

E(ri), (13)

where N is the number of points [6 in the case considered in
Fig. 2(a)], and ri are their coordinates. Another possible set of
points are the 8 vertices of a cube of size 2a that is centered at
the position of the dipole: r0 ± a · ei ± a · ej , i �= j [Fig. 2(b)].

As discussed above, the dipole field is distorted by the
FDTD rectangular mesh in close proximity to the location of
the dipole. Therefore, its arithmetic average will not vanish if
a is too small, including only a few mesh steps (moreover, it
will depend on the frequency of the dipole radiation). Clearly,
one cannot choose a less than a mesh step, since in this case
numerical interpolation of the electric field will involve its
value at the location of the dipole. At the same time, for too
large a value of a, the arithmetic average of the field Esc will
differ from its value at the position of the dipole. Further, the
last radiating term in (8) becomes dominant for large a (in
the far zone), which leads to nonzero averaged dipole field,
since

∑
i=x,y,z [ei(ei ,p) − p] �= 0; compare with (12). Thus,

there is an optimal range of values of a which is transferable
(independent from the simulated geometry).

We compared our approach with the standard way of
solving the Maxwell-Liouville equations, where the electric
field at a FDTD grid point (which includes the primary
radiation produced by this point) enters the Hamiltonian (2).
We found that the latter approach can lead to changes in
resonant frequencies and/or spectral peak amplitudes. One can
observe the effect in a simple simulation of the electromagnetic
response of a single quantum emitter driven by an incident field
in vacuum (Fig. 3). Below we explain the origin and sign of
the numerically observed shift using a simple analytical model.
We note that a similar effect was reported in the past in a study
of an atomic layer coupled to a plasmonic system [33], where
the field used in the quantum solution was taken to be of the
form

E + P
3ε0

, (14)

allowing account of dipole-dipole interaction within a single
grid cell [51].

Before concluding this section, we introduce an elegant way
of confirming that the primary radiation of a single emitter
influences its dynamics in the standard approach of simulating
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FIG. 3. (Color online) FDTD results for the scattering cross
section of a single quantum emitter (transition frequency ω0 =
1 eV, dipole moment μ = 1 e nm, relaxation rates γ = 1013 s−1,
γ ∗ = 0.5 × 1013 s−1) subject to an incident light. The mesh step is
�r = 1 nm. Using the standard approach leads to a blueshift of the
emitter spectral response.

the Maxwell-Liouville equations. If one changes the sign
of the interaction term in (2) from negative to positive, the
standard approach becomes unstable and can lead to increase
of the excited population even in the absence of an incident
applied field (if the dipole moment and relaxation times are
not small). This is evidently incorrect, since changing the
sign of the interaction term in (2) in the case of a free-space
(with no scattering objects) simulation should not influence
the dynamics of the emitter.

To explain this effect, we consider the discretized Amper
law (4), neglecting the magnetic field, ε E

�t
≈ − P

�t
. The

numerical electric field E0 corresponding to the primary source
radiation should be directed oppositely to its polarization P at
the position of the source,

E0(r0) ∼ −P. (15)

In the limit of a two-level system and a low-intensity field, the
system dynamics can be described by an oscillator model [52],

ẍ + γ ẋ + ω2
0x = e

m
E, (16)

where x is oscillator displacement from equilibrium, γ is the
dissipation rate, ω0 is the transition frequency, e is the charge,
and m is the mass. The electric field E includes the numerical
field produced by the emitter E0; see (7). The dipole moment
is p = ex, and the polarization is proportional to the dipole
moment via the numerical value of the delta function in (6)
(roughly the inverse of a mesh step). Therefore, one can rewrite
(15) as E0 = −αx, where α is a positive coefficient which
depends on the mesh step. Substituting the last equality into
(16) results in an increased transition frequency as compared
to the correct value ω0, (ω2

0 + α e
m

)1/2 > ω0. (This explains a
blueshift in Fig. 3.) Change of the sign of the interaction term
in (2) corresponds to applying a negative α in our oscillator
model. If |α| is large enough [corresponding to a large inverse
mesh step and numerical value of the delta function in Eq. (6)],
the transition frequency becomes imaginary, and the solution
to Eq. (16) diverges.
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We note that within the approach developed here the field
produced by the emitter is excluded from the Hamiltonian
(2) and hence the emitter is completely independent from
its primary radiation (α = 0). Consequently, our results are
invariant under change of the sign of the interaction term, as
they should be, exhibiting no instabilities.

III. APPLICATIONS

We implemented the methods developed above as a part of
the parallel C++ Electromagnetic Template Library (EMTL)
[53]. In this section we apply the theory of Sec. II to
two problems of rather general fundamental and practical
interest, which in addition present useful tests of our methods,
namely the calculation of spontaneous emission rates and
the problem of quantum-emitter-induced transparency in a
plasmonic antenna system.

A. Calculation of spontaneous emission rates

The spontaneous decay rate γ of a source in a dielectric
environment is proportional to the average power radiated by
the classical oscillating dipole P [4,5],

γ

γ0
= P

P0
, (17)

where the subscript “0” refers to free-space values. The
spectral dependence of the power P can be calculated within
FDTD using the Fourier transforms j(r0,ω) and E(r0,ω) at the
location of the dipole [54–57],

P (ω) = 1
2 Re[j∗(r0,ω) · E(r0,ω)]

= 1
2 Re [j(r0,ω)] · Re [E(r0,ω)]

+ 1
2 Im [j(r0,ω)] · Im [E(r0,ω)] . (18)

The last two terms on the right-hand side of the second equality
sign in (18) are nearly equal in magnitude but opposite in
sign [55]; hence their sum could be a source of numerical
inaccuracy. In addition, application of expression (18) requires
placement of the dipole exactly at an FDTD grid point,
which is often a limitation. Alternatively, one can calculate
the power P (ω) by integrating over the flux of the Poynting
vector, S(ω) = 1

2 Re[E∗(ω) × H(ω)] along a closed surface
surrounding the dipole [58]. This approach, however, requires
calculation of the Fourier-transformed field at multiple points
on this surface.

As discussed above [see (7)], the total field at the position
of dipole is

E(r0) = E0(r0) + Esc(r0), (19)

where E0 is the primary dipole radiation (8) and Esc is the
field scattered from other objects and revisiting the vicinity of
the dipole (we assume that there are no sources other than the
dipole). The power radiated by dipole can be written as

P (ω) = P0(ω) + Psc(ω), (20)

where the contribution of the primary field E0 is equal to the
power radiated by a dipole in free space,

P0(ω) = |p|2
12πε0

nω4

c3
. (21)

dipole
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FIG. 4. (Color online) Spontaneous emission decay rate versus
the unitless distance parameter kh (where k is the wave vector and h

denotes the distance of the quantum emitter from a perfect mirror) for
perpendicular and parallel orientations of the dipole with respect to the
mirror. The rate is normalized to that in a free space. Results obtained
using the field-partitioning approach are in perfect agreement with the
analytical results of [59], whereas the symmetry-adapted averaging
method yields satisfactory but not full agreement.

The last term in (20) is given as

Psc(ω) = 1
2 Re[j∗(r0,ω) · Esc(r0,ω)]. (22)

This term (22) can be calculated with knowledge of the
scattered field Esc, which is obtained by applying one of the two
approaches described in Sec. II. Within the field-partitioning
approach of Sec. II A, Esc is the field simulated in the SF
region. Within the symmetry-adapted averaging approach of
Sec. II B, Esc is obtained by averaging the total field over a
specifically chosen set of points around the dipole.

To test our approaches we calculate the spontaneous
emission rate for an analytically soluble model, namely, a
dipole near a perfect mirror. We consider two different dipole
orientations: parallel and perpendicular to the mirror (Fig. 4).
The distance between the dipole and the mirror is taken to
be h = 30 and the FDTD mesh step is �r = 1 (we use
arbitrary units, since in our nondispersive case Maxwell’s
equations are scaling invariant). The results obtained using our
field-partitioning theory, Sec. II A, are seen to be in perfect
agreement with the analytical results of [59]. Remarkably
good agreement with the analytical results is obtained also
using our symmetry-adapted averaging approach, developed
in Sec. II B [where we chose, as a simple example, the set
of points presented in Fig. 2(a) with a = �r]. As anticipated
in Sec. II B, the latter approach is seen to be less accurate
than the former, yet sufficiently accurate for most purposes,
with the merit of being very easy to implement. We remark
that differences between the radiated computed field and the
analytical expression (8), (9), which may arise from numerical
errors, may generate a deviation of the arithmetic average from
zero [hence our use of ≈ in (13)].

It is useful (and interesting) to note that the primary dipole
radiation field E0 arrives to a chosen set of points with delay
d/c, whereas this is not the case for the scattered field Esc.
Hence in applying the symmetry-adapted averaging approach
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to expression (22) we implement a phase shift in the averaged
field calculation as

Esc(r0,ω) = 1

N

∑
i

F̂ [E(ri ,t + d/c)] , (23)

where N is the number of points [6 and 8 in the cases
considered in Figs. 2(a) and 2(b), respectively], ri are their
coordinates, d = |ri − r0| (a or

√
3a in the cases considered

in Fig. 2), and F̂ stands for a Fourier transform.

B. Quantum-emitter-induced transparency

In this subsection we consider another problem of more
general interest that serves also as a useful test of the methods
introduced in Sec. II, namely, the influence of a single quantum
emitter (e.g., quantum dot) on plasmon formation in metal
nanoparticles.

We solve the Maxwell-Liouville equations following the
algorithm described in [31]:

(1) First, the magnetic field H is updated according to
Faraday’s law (3).

(2) Next the electric field E is updated using Amper’s law
(4). The polarization current (6) in Amper’s law is calculated
using the density matrix ρ̂ at the previous time step.

(3) With knowledge of the electric field E (stored in
memory for the current and previous time step), we update
the density matrix ρ̂ according to the Liouville equation (1),
(2) using a fourth-order Runge-Kutta scheme [60].

Numerical stability is ensured via the requirement that
Tr(ρ̂) = 1 at all times.

Our numerical setup is illustrated schematically in Fig. 5.
We consider the optical response of a hybrid system consisting
of a quantum emitter between two gold ellipsoids embedded
in an external medium with refractive index n = 1.33. The
ellipsoid major and minor diameters are 80 and 30 nm,
respectively, and the distance between the ellipsoids is taken to
be 15 nm. The incident wave is polarized along the x direction
and propagates in the y direction (Fig. 5). We use a mesh step
size of �r = 1 nm.

PMLPML
2

1
3

x

y

z

FIG. 5. (Color online) Effects of a quantum emitter (e.g., a single
quantum dot) on a plasmonic antenna consisting of a pair of gold
ellipsoids. The incident wave is polarized along the x direction and
propagates in the y direction. The red box denoted 1 is the TF-SF
border for generation of the incident plane wave. Box 2 is the surface
applied to calculate the flux of the scattered field. Box 3 is the surface
applied to calculate the absorbed electric flux. In a field-partitioning
approach (see Sec. II A), we surround a quantum dot (star) by a small
(red) TF-SF border that generates a wave of the form (8), (9). In
the symmetry-adapted averaging approach (see Sec. IIB), we do not
need this additional TF-SF border; therefore, the distance between
the ellipsoids (in mesh steps) can be chosen to be smaller.

A quantum emitter (e.g., quantum dot) supports three
excitons with optical dipoles parallel to the x, y, and z axes
[8]. In the present case, the field at the position of a quantum
emitter has only an x component, due to the symmetry of
the considered setup (Fig. 5), and hence only the x-oriented
exciton contributes. Its dynamics is described by the Liouville
equation (1), (2), which can be rewritten as

∂ρ11

∂t
= −∂ρ22

∂t
= i

�
μEx(t)(ρ12 − ρ∗

12) + γρ22, (24)

∂ρ12

∂t
= i

�
ω0ρ12 + i

�
μEx(t) (ρ11 − ρ22) − γ ∗ρ12, (25)

where ω0 is the exciton transition frequency, μ is the
dipole moment, and γ , γ ∗ are diagonal and off-diagonal
dissipation rates (corresponding to population relaxation and
phase decoherence, respectively).

We note that Eqs. (24), (25) are inherently nonlinear.
However, if the incident intensity is low, the quantum system
probability density will reside essentially only in the ground
state: ρ11 ≈ 1, ρ22 
 1. Typically |ρ12|2 ≈ ρ11ρ22; therefore
ρ22 
 |ρ12|, and ρ22 can be neglected. It then follows that
the steady solution for ρ12 and the polarization (6) oscillate
at the incident frequency ω [31]. To find this solution, we
can simulate optical response of a system for specific incident
frequency ω. However, we can substantially save computing
time with the help of short-pulse approach [31]. Following
this approach, we specify an incident wave of the form of an
ultrashort pulse. In the present simulations we use a Gaussian
function, Einc(t) = exp [−( t−t0

tw
)2], where the parameters t0 and

tw are chosen to cover the considered spectral range. The
impulse duration is ∼0.5 fs and the incident field strength
is ∼1 V/m (we found that the optical response scales linearly
with the incident intensity, as expected for the low field
considered). The Maxwell-Liouville equations are evolved for
several picoseconds (the simulation time should be longer than
the lifetime of the excited state of the emitter 1/γ ). At the end
of the simulation, we Fourier-transform the calculated field.
We note that the incident pulse can be represented as a linear
superposition of cw plane waves with different frequencies
ω. Therefore, under the conditions of linear response (which
is valid in our case of low incident intensity), the Fourier-
transformed field E(ω) contains all the information relevant to
a steady state process at the frequency ω.

To simulate the incident pulse on a finite FDTD mesh,
we apply the total field–scattered field (TF-SF) approach
discussed in Sec. IIA: an incident wave is generated at the
TF-SF border and propagates in the total field (TF) region; see
red box (1) in Fig. 5. The total field is simulated within the TF
region. Total field includes the incident field, the field produced
by the polarized nanoparticles, and the field due to the excited
quantum emitter. The field Ex(t) substituted into the Liouville
equations (24), (25) should be free of the quantum emitter
primary radiation (8) in order to avoid self-interaction. This
can be accomplished using one of the techniques described in
Sec. II.

At the end of the simulation, we Fourier-transform the
calculated field and normalize it by the incident field spectrum.
The Poynting flux of this field is integrated over appropriately
chosen surfaces to obtain the scattering and absorption cross
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sections; see surfaces (2) and (3) in Fig. 5. The absorption
spectrum can be also calculated as

∫
V

ω Im(ε)|E(ω,r)|2d3r ,
where V is the volume of the nanoparticles. As we verified
also numerically, both methods lead to the same result.

We impose boundary conditions in the form of convolution
perfectly matched layers (PMLs) [22] to avoid numerical
reflection of outgoing electromagnetic wave back into the sim-
ulation domain. To minimize undesired numerical reflection
from the PMLs we use additional back-absorbing layers [61]
(this technique is especially effective for evanescent waves).

Simulation of the metal nanoparticles requires special care
to ensure proper description on the rectangular FDTD mesh.
This is accomplished by means of a subpixel smoothing
method for dispersive media [62], which significantly im-
proves the FDTD accuracy for arbitrarily shaped scatterers.
Experimental data for the gold dielectric permittivity ε(ω)
are taken from [63,64]. The frequency dependence of ε(ω)
is assigned using the modified Lorentz approximation, within
which the dielectric polarization depends on both the electric
field and its first time derivative [65,66],

ε(ω) = ε∞ − ω2
D

ω2 + iωγD

+
2∑

p=1

�εp

(
ω2

p − iγ ′
pω

)
ω2

p − 2iωγp − ω2
, (26)

with ε∞ = 1.14, ωD = 7, γD = 0.057, �ε1 = 0.23, �ε2 =
4.48, ω1 = 2.07, ω2 = 2.54, γ1 = 0.237, γ2 = 1.25, γ ′

1 = 4.5,
γ ′

2 = 2.71; ωD , γD , ωp, γp, and γ ′
p are given in 1/μm

units, and the speed of light is unity. The modified Lorentz
approximation is implemented in the simulation using the
auxiliary differential equation (ADE) technique [65].

The dashed curves in Fig. 6 show the scattering and
absorption cross sections for the system of two ellipsoids
without the quantum emitter. Results obtained using both
approaches described in Sec. II are in good agreement
(the difference between then is indistinguishable in Fig. 6).
The field-partitioning approach requires reservation of the
additional free space around the quantum emitter for the
internal TF region (see small red box in Fig. 5). As discussed
in Sec. II A, this space should be at least 5 mesh steps, which
places a lower bound on the separation between the gold
ellipsoids. If the distance between ellipsoids is smaller (a few
mesh steps), the symmetry-adapted averaging approach can be
applied, or the mesh resolution can be increased to make the
field-partitioning approach applicable.

As expected, the calculated spectra exhibit a strong longi-
tudinal dipolar plasmon resonance at a frequency ω = 1.7 eV,
where the electric field E(ω) is greatly enhanced as compare
to its incident value (Fig. 6, inset). Field enhancement is a
characteristic feature of localized surface plasmons with a wide
variety of applications [3]. The solid curves of Fig. 6 illustrate
the corresponding cross section spectra for a pair of ellipsoids
separated by a quantum emitter. The dipole moment is taken
to be μ = 3 e nm, the dissipation rates are γ = 1011 s−1 and
γ ∗ = 2 × 1011 s−1, and the transition frequency is tuned to the
frequency of a plasmon resonance, ω0 =1.7 eV. We observe a
deep transparency minimum in the calculated spectra, caused
by Fano interference between the plasmon resonance and the
quantum emitter transition. A similar phenomenon was found
in the previous literature [10], where the quantum emitter
(quantum dot) was modeled using a dielectric function as
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FIG. 6. (Color online) Scattering (a) and absorption (b) cross
section for a system of two gold ellipsoids (major diameter 80 nm,
minor diameter 30 nm, distance between ellipsoids 15 nm), subject to
an incident light field polarized in the horizontal direction. The dashed
curves in both figures are computed for the bare plasmonic system
whereas the solid curves are obtained in the presence of a quantum
emitter between the ellipsoids, resulting in a transparency minimum
in both spectra (transition frequency ω0 = 1.7 eV, dipole moment
μ = 3 e nm, relaxation rates γ = 1011 s−1, γ ∗ = 2 × 1011 s−1).
The inset shows the field distribution (component parallel to the
incident light polarization) at frequency ω = 1.7 eV in the absence
of the quantum emitter. Different scales are used for the vertical and
horizontal dimensions.

a single Lorentz term [10,67–69]. This latter model is valid
only in the low excitation limit, where quantum-mechanical
coherences between the ground and excited states of a quantum
emitter can be neglected, a condition that is satisfied at the
intensity considered in [10] and in the present study. In our
future work we plan to apply the present (nonperturbative)
model to study the interaction between a quantum emitter and
a plasmon subject to nonlinear interaction with incident fields.

IV. CONCLUSION

In this paper we developed two finite-difference time
domain (FDTD) approaches for simulation of single quan-
tum emitters interacting with plasmonic nanoparticles. Both
approaches are designed to eliminate the problem of self-
interaction, which often appears spuriously in solutions of the
coupled Maxwell-Liouville equations. Hence both approaches
can be used for modeling of single as well as ensembles of
quantum emitters in arbitrary dielectric environment.

One approach is based on a field-partitioning concept,
akin to the familiar total field–scattered field technique for
simulation of point-source radiation. The second approach is
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based on field averaging at a specifically chosen (symmetry
adapted) set of points around the emitter. We illustrated the
accuracy and efficiency of the methods by application to two
problems, both of which are fundamentally and practically
interesting while also providing complementary tests of the
accuracy of the methods. One application, Sec. III A, is the
calculation of spontaneous emission rates. Here, by consider-
ing an analytically soluble model, we were able to show that
the field-partitioning method yields perfect agreement with
the exact (analytical) solution, whereas the symmetry-adapted
averaging method is somewhat less accurate but has the
merits of simplicity and elegance. Both of these findings
were anticipated. As a second application, we explored the
interaction of a single quantum emitter (e.g., quantum dot)
with metal nanoparticles, a problem that is the topic of
ongoing experiments with interesting potential applications.
We compared the proposed approaches with the standard
method of solving the coupled Maxwell-Liouville equations
(within which the primary emitter radiation can influence its
dynamics) and discussed implications.

Our approaches exhibit all the advantages of the FDTD
method: they are suitable for simulation of nanoparticles
with arbitrary geometry and optical properties (dispersion,
anisotropy, nonlinearity), and they can be easily used for
observation of the field evolution in time and space. The
proposed approaches are relatively simple to program and can
be readily incorporated into an existing FDTD code.

Our approaches can be applied to a variety of interesting
topics, including the interaction of plasmons with multiple
quantum emitters, the interaction of a quantum emitter with
dark plasmons, and the new physics introduced under nonper-
turbative fields. These problems are the subjects of ongoing
research in our group.
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