Различия

Здесь показаны различия между выбранной ревизией и текущей версией данной страницы.

ru:tutorial [2012/11/15 06:49]
deinega [Геометрические тела]
ru:tutorial [2014/01/11 06:04] (текущий)
deinega [Наклонное падение]
Строка 551: Строка 551:
   M.AddPolarizability(emLorentz(.5*(2*M_PI), .1*(2*M_PI), 2*1e-5));   M.AddPolarizability(emLorentz(.5*(2*M_PI), .1*(2*M_PI), 2*1e-5));
  
-  task.AddObject(M,GetPolyhedronPlate(Vector_3(0,0,1),Vector_3(0,0,1),1));+  task.AddObject(M,GetPlate(Vector_3(0,0,1),Vector_3(0,0,1),1));
  
-Пластинка задается функцией GetPolyhedronPlate, первый аргумент которой задает направление вдоль пластинки (направление z), второй точку, через которую проходит одна из сторон пластинки, а третий - толщину пластинки (она равна 1).+Пластинка задается функцией GetPlate, первый аргумент которой задает направление вдоль пластинки (направление z), второй точку, через которую проходит одна из сторон пластинки, а третий - толщину пластинки (она равна 1).
 Пластинка сделана из дисперсной среды, описываемой двумя членами Лоренца. Пластинка сделана из дисперсной среды, описываемой двумя членами Лоренца.
  
Строка 576: Строка 576:
 Ниже мы рассчитываем отражение от полубесконечной кремниевой подложки в случае нормального падения. Мы используем уже имеющийся код из предыдущей подсекции (задание граничных условий, области Total Field и т. д.) Ниже мы рассчитываем отражение от полубесконечной кремниевой подложки в случае нормального падения. Мы используем уже имеющийся код из предыдущей подсекции (задание граничных условий, области Total Field и т. д.)
  
-Для задания полубесконечной подложки мы можем воспользоваться функцией GetPolyhedronPlane. В отличие от пластинки, у подложки нет второй замыкающей поверхности, и она бесконечно продолжается вдоль оси z. В модели FDTD она погружается в PML, что моделирует ее бесконечность.+Для задания полубесконечной подложки мы можем воспользоваться функцией GetHalfSpace. В отличие от пластинки, у подложки нет второй замыкающей поверхности, и она бесконечно продолжается вдоль оси z. В модели FDTD она погружается в PML, что моделирует ее бесконечность.
  
 Материалом подложки будет кремний. Для получения соответствующего объекта emMedium можно воспользоваться функцией getSi, у которой имеется аргумент, по умолчанию равный единице. Этот аргумент задает, чему равна единица длины FDTD в микронах. Это необходимо для правильной калибровки коэффициентов, участвующих в расчете диэлектрической проницаемости (см. [[tutorial?&#sredy|как задавать среды в EMTL]]). В нашем случае единица FDTD будет равна 0.1 микрона. Материалом подложки будет кремний. Для получения соответствующего объекта emMedium можно воспользоваться функцией getSi, у которой имеется аргумент, по умолчанию равный единице. Этот аргумент задает, чему равна единица длины FDTD в микронах. Это необходимо для правильной калибровки коэффициентов, участвующих в расчете диэлектрической проницаемости (см. [[tutorial?&#sredy|как задавать среды в EMTL]]). В нашем случае единица FDTD будет равна 0.1 микрона.
  
-  task.AddObject(getSi(.1),GetPolyhedronPlane(Vector_3(0,0,1), Vector_3(0,0,1)));+  task.AddObject(getSi(.1),GetHalfSpace(Vector_3(0,0,1), Vector_3(0,0,1)));
      
 Параметры, используемые для апроксимации диэлектрической проницаемости кремния функцией getSi, были получены с помощью программы на MatLab, которую вы можете найти в разделе [[fitting]]. Параметры, используемые для апроксимации диэлектрической проницаемости кремния функцией getSi, были получены с помощью программы на MatLab, которую вы можете найти в разделе [[fitting]].
Строка 596: Строка 596:
  
 Как видно, кремний достаточно сильно отражает в оптическом диапазоне. Для уменьшения отражения могут использоваться [[ar|антиотражающие текстурированные покрытия]]. Как видно, кремний достаточно сильно отражает в оптическом диапазоне. Для уменьшения отражения могут использоваться [[ar|антиотражающие текстурированные покрытия]].
- 
 =====Наклонное падение===== =====Наклонное падение=====
  
Строка 605: Строка 604:
 Для управления итерационным процессорм используется метод Total Field/Scattered Field (TF/SF). Для управления итерационным процессорм используется метод Total Field/Scattered Field (TF/SF).
 Спустя некоторое число итераций граница TF/SF работает как применение периодических граничных условий с нужным сдвигом во времени. Спустя некоторое число итераций граница TF/SF работает как применение периодических граничных условий с нужным сдвигом во времени.
 +
 +Наш метод описан в статье
 +[[http://www.opticsinfobase.org/abstract.cfm?uri=ol-33-13-1491|http]]{{:valuev_-_iterative_technique_for_analysis_of_periodic_structures_at_oblique_incidence_in_the_finite-difference_time-domain_method.pdf|PDF}}
  
 {{tutorial_periodic:geometry_obl.png?350}}\\ {{tutorial_periodic:geometry_obl.png?350}}\\
 
/home/kintechlab/fdtd.kintechlab.com/docs/data/attic/ru/tutorial.1352947744.txt.gz · Последние изменения: 2012/11/15 06:49 — deinega     Наверх