Differences

This shows you the differences between two versions of the page.

en:microvolt [2012/11/15 08:29]
deinega
en:microvolt [2013/08/08 21:28] (current)
deinega
Line 1: Line 1:
 ======Microvolt====== ======Microvolt======
 +
 +<html><table><tr><td></html>
 +
 is free C++ program for semiconductor devices modeling (diodes, solar cells, transistors etc.). Code can be compiled under UNIX and Windows. In the future we are planning to develop its parallel MPI version. is free C++ program for semiconductor devices modeling (diodes, solar cells, transistors etc.). Code can be compiled under UNIX and Windows. In the future we are planning to develop its parallel MPI version.
  
Line 8: Line 11:
 To solve system of discretized equations on a mesh(es) we use Newton-Rhapson method. Linear algebra operations can be performed using PARDISO, LAPACK or any other solvers. To solve system of discretized equations on a mesh(es) we use Newton-Rhapson method. Linear algebra operations can be performed using PARDISO, LAPACK or any other solvers.
  
-For solar cells modeling, one can use carriers generation profile obtained from independent electromagnetic simulation. We are using results obtained by EMTL package that can be substituted as an input to Microvolt. +For solar cells modeling, one can use carriers generation profile obtained from independent electromagnetic simulation. We are using results obtained by [[\start|EMTL]] that can be substituted as an input to Microvolt.
  
 **Application of the code** **Application of the code**
Line 15: Line 17:
 Microvolt was successfully used to simulate solar cells of different geometries (nanowires, textured thin films) based on Si, GaAs, CdTe, etc. This is list of chosen publications: Microvolt was successfully used to simulate solar cells of different geometries (nanowires, textured thin films) based on Si, GaAs, CdTe, etc. This is list of chosen publications:
  
-  * A. Deinega and S. John, "Solar power conversion efficiency in modulated silicon nanowire photonic crystals", Journal of Applied Physics 112, 074326 (2012) [[http://jap.aip.org/resource/1/japiau/v112/i7/p074327_s1|http]]{{:deinega_-_effective_optical_response_of_silicon_to_sunlight_in_the_fdtd_method.pdf|PDF}}+  * A. Deinega, S. Eyderman, S. John, "Coupled optical and electrical modeling of solar cell based on conical pore silicon photonic crystals", J. Appl. Phys. 113, 224501 (2013) [[http://jap.aip.org/resource/1/japiau/v113/i22/p224501_s1|http]]{{:deinega_-_coupled_optical_and_electrical_modeling_of_solar_cell_based_on_conical_pore_silicon_photonic_crystals.pdf|PDF}} 
 +  * A. Deinega, S. John, "Solar power conversion efficiency in modulated silicon nanowire photonic crystals", J. Appl. Phys. 112, 074327 (2012) [[http://jap.aip.org/resource/1/japiau/v112/i7/p074327_s1|http]]{{:deinega_-_solar_power_conversion_efficiency_in_modulated_silicon_nanowire_photonic_crystals.pdf|PDF}} 
 +  * A. Deinega, S. John, "Finite difference discretization of semiconductor drift-diffusion equations for nanowire solar cells", Comp. Phys. Commun. 183, 2128 (2012) [[http://www.sciencedirect.com/science/article/pii/S0010465512001853|http]]{{:deinega_-_finite_difference_discretization_of_semiconductor_drift-diffusion_equations_for_nanowire_solar_cells.pdf |PDF}} 
 + 
 +<html></td><td></html> 
 +{{:transport.png?175}} 
 +<html></td></tr></table></html>
  
-  "Finite difference discretization of semiconductor drift-diffusion equations for nanowire solar cells", Computer Physics Communications 183, 2128 (2012) [[http://www.sciencedirect.com/science/article/pii/S0010465512001853|http]]{{:deinega_-_effective_optical_response_of_silicon_to_sunlight_in_the_fdtd_method.pdf|PDF}}+**Download**
  
 +You can download the code from [[https://sites.physics.utoronto.ca/sajeevjohn/software/microvolt|Microvolt web-page]].
 
/home/kintechlab/fdtd.kintechlab.com/docs/data/attic/en/microvolt.1352953778.txt.gz · Last modified: 2012/11/15 08:29 by deinega     Back to top