Differences

This shows you the differences between two versions of the page.

en:fitting [2012/02/01 20:58]
deinega
en:fitting [2012/10/15 18:37] (current)
deinega
Line 14: Line 14:
  
 Number of terms <tex>P</tex> and coefficients <tex>\varepsilon_{\infty}</tex>, <tex>a_{p,j}</tex>, <tex>b_{p,j}</tex> should be chosen in order to approximate given <tex>\varepsilon(\omega)</tex> with sufficient accuracy and do not necessary have a physical meaning. Number of terms <tex>P</tex> and coefficients <tex>\varepsilon_{\infty}</tex>, <tex>a_{p,j}</tex>, <tex>b_{p,j}</tex> should be chosen in order to approximate given <tex>\varepsilon(\omega)</tex> with sufficient accuracy and do not necessary have a physical meaning.
 +
 +You can fit arbitrary dielectric function with {{:fitting.zip|fitting program}} written on MatLab.
 +This program is well commented and easy to understand.
 +You should specify all necessary parameters (number of terms <tex>P</tex>, file with tabular dielectric function, etc.) in file 'fitting.m' .
 +Initial settings in 'fitting.m' were used to fit experimental data for silicon dielectric permittivity.
  
 In physical literature following models are commonly used: In physical literature following models are commonly used:
Line 19: Line 24:
   *Drude term <tex>\frac{\Delta \varepsilon \omega_p^2}{-2i\omega\gamma_p-\omega^2}</tex>   *Drude term <tex>\frac{\Delta \varepsilon \omega_p^2}{-2i\omega\gamma_p-\omega^2}</tex>
   *Lorentz term <tex>\frac{\Delta \varepsilon \omega_p^2}{\omega_p^2-2i\omega\gamma_p-\omega^2}</tex>   *Lorentz term <tex>\frac{\Delta \varepsilon \omega_p^2}{\omega_p^2-2i\omega\gamma_p-\omega^2}</tex>
 +  *modified Lorentz term <tex>\frac{\Delta \varepsilon (\omega_p^2 - i\omega\gamma_p')}{\omega_p^2-2i\omega\gamma_p-\omega^2}</tex>
  
- +Using modified Lorentz term allows to obtain more accurate fittings. 
-Case <tex>a_{p,1} \ne 0</tex> does not correspond to any of physical model, but allows to obtain more accurate fittings. +For example, two (<tex>P=2</tex>) modified Lorentz terms are sufficient to fit silicon dielectric function over the wavelength range from 300 to 1000 nm, whereas even a large number of Debye, Drude or Lorentz terms (<tex>a_{p,1}=0</tex>) is inadequate there 
-For example, two (<tex>P=2</tex>) terms of this case are sufficient to fit silicon dielectric function over the wavelength range from 300 to 1000 nm, whereas even a large number of Debye, Drude or Lorentz terms (<tex>a_{p,1}=0</tex>) is inadequate there +
 ((A. Deinega and S. John, "Effective optical response of silicon to sunlight in the finite-difference time-domain method," Opt. Lett. 37, 112-114 (2012)  ((A. Deinega and S. John, "Effective optical response of silicon to sunlight in the finite-difference time-domain method," Opt. Lett. 37, 112-114 (2012) 
 [[http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-37-1-112|http]] [[http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-37-1-112|http]]
Line 33: Line 38:
  
 The way to substitute Debye, Drude and Lorentz terms into FDTD scheme is described in  The way to substitute Debye, Drude and Lorentz terms into FDTD scheme is described in 
-((A. Taflove and S. H. Hagness, Computational Electrodynamics: The Finite Difference Time-Domain Method, Artech House, Boston (2005))). +((A. Taflove and S. H. Hagness, Computational Electrodynamics: The Finite Difference Time-Domain Method, Artech House, Boston (2005) )). 
-FDTD scheme for <tex>a_{p,1} \ne 0</tex> terms using ADE (auxliliary differential equation) technique can be found in our work+FDTD scheme for modified Lorentz terms using ADE (auxliliary differential equation) technique can be found in our work
 ((A. Deinega and S. John, "Effective optical response of silicon to sunlight in the finite-difference time-domain method," Opt. Lett. 37, 112-114 (2012)  ((A. Deinega and S. John, "Effective optical response of silicon to sunlight in the finite-difference time-domain method," Opt. Lett. 37, 112-114 (2012) 
 [[http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-37-1-112|http]] [[http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-37-1-112|http]]
 {{:deinega_-_effective_optical_response_of_silicon_to_sunlight_in_the_fdtd_method.pdf|PDF}})). {{:deinega_-_effective_optical_response_of_silicon_to_sunlight_in_the_fdtd_method.pdf|PDF}})).
  
-You can fit arbitrary dielectric function with simple MatLab program that can be download from {{:fitting.zip|here}}. + 
-This program is well commented and easy to understand. +/((M. A. Green and M. Keevers, Optical properties of intrinsic silicon at 300 K, Progress in Photovoltaics 3, 189 (1995)
-Main file is 'fitting.m' where you can specify all necessary parameters (number of terms <tex>P</tex>, file with tabular dielectric function, etc.). +
-Initial settings in 'fitting.m' were used to fit experimental data for silicon dielectric permittivity +
-((M. A. Green and M. Keevers, Optical properties of intrinsic silicon at 300 K, Progress in Photovoltaics 3, 189 (1995)+
 [[http://onlinelibrary.wiley.com/doi/10.1002/pip.4670030303/abstract|http]])) [[http://onlinelibrary.wiley.com/doi/10.1002/pip.4670030303/abstract|http]]))
-(see file 'si.dat' in archive) with two terms <tex>a_{p,1} \ne 0</tex>.+(see file 'si.dat' in archive) with two terms <tex>a_{p,1} \ne 0</tex>. */ 
 + 
 
/home/kintechlab/fdtd.kintechlab.com/docs/data/attic/en/fitting.1328115536.txt.gz · Last modified: 2012/02/01 20:58 by deinega     Back to top